• 제목/요약/키워드: transmission lines

검색결과 1,307건 처리시간 0.025초

대형 송전선로에 의한 TV 전파장해 고찰 (Ghost and Blocking of TV signal by UHV Transmission Lines)

  • 신구용;이동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1776-1778
    • /
    • 1998
  • KEPCO has been constructing the 765 kV double circuit transmission line since 1997. It is worried that the 765 kV transmission lines make TV interference(Ghost and Blocking) due to high tower and multi sub-conductors. This paper presents the mechanism, the measuring method and the results of TV ghost and blocking measurement using a new TV ghost measurement system in a vehicle which was developed by KEPRI.

  • PDF

한국전력 가공송전선의 허용전류를 증가시키기 위한 기상모델의 평가 (An Evaluation of Weather Model for Increasing Ampacity in KEPCO's Overhead Transmission Lines)

  • 김성덕
    • 조명전기설비학회논문지
    • /
    • 제18권2호
    • /
    • pp.125-134
    • /
    • 2004
  • 전력설비 시장의 새롭게 조정된 경제환경으로 인하여 송전선로에 대한 투자와 운용 정책에 근본적인 변화가 초래되었다. 따라서, 최악의 기상조건을 사용하는 형식적인 가정들을 토대로 주어지는 도체의 허용전류를 증가시키기 위하여 현재 설비를 평가하는 것이 중요하게 되었다. 여전히 세계의 대부분 전력회사에서는 정적송전용량을 채용하고 있지만, 몇몇 회사들은 송전용량을 증가시키기 위하여 동적송전용량을 실시간으로 모니터링 하는 등 다양한 시도를 해왔다. 이 연구는 기상모델로 규정된 한국전력공사(KEPCO)의 송전선로의 정적송전용량을 평가하기 위한 시도이다. 과거 기상청에서 관측된 기상 데이터를 근거로 송전용량을 결정하기 위한 몇 가지 환경적 특성을 검토하였다. 그 결과, 한국전력의 송전선로에 계절별 또는 지역별 정격을 적용할 수 있으며, 현재 운용 중인 도체를 새로운 고내열 도체로 교체하지 않더라도 기존 송전용량을 좀더 증대시킬 수 있음을 확인하였다.

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.

2회선 가공송전선의 단시간정격에 관한 평가방법 (An Evaluation Method for Short-Term Ratings of Double-Circuit Overhead Transmission Lines)

  • 김성덕;손홍관;장태인
    • 조명전기설비학회논문지
    • /
    • 제21권7호
    • /
    • pp.20-28
    • /
    • 2007
  • 본 논문에서는 2회선 가공송전선에 대하여 2회선 중 1회선에 고장이 발생한 경우에 안전하게 운전할 수 있는 단시간정격을 결정하기 위한 해석적 방법을 기술한다. 도체의 온도특성을 나타내는 열평형방정식을 선형화 함으로써 이 선형방정식으로 1회선 선로에 과부하가 발생하는 동안 과전류와 그 온도 특성을 쉽게 표현할 수 있다. 일반적으로 단시간 선로정격은 도체의 수명과 이도를 동시에 고려하여 결정해야 한다는 것은 잘 알려진 사실이다. 그렇지만 대부분의 전력회사는 단시간정격에 대한 각자의 다른 지침을 갖고 있다. 이 논문에서는 제안된 방법을 사용하면 과거 3시기에 건설된 한국전력공사의 가공송전선에 규정된 단시간정격을 재평가할 수 있고, 그 결과 단시간정격을 효율적으로 증대시킬 수 있음을 확인하였다. 또한 이 방법은 2회선 선로 중 1회선에 고장이 발생할 경우에 기존 선로에 어떤 조치도 하지 않아도 단시간 동적송전용량을 결정하는데 직접 이용할 수 있을 것이다.

Behavior of self supported transmission line towers under stationary downburst loading

  • Darwish, Mohamed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.481-498
    • /
    • 2011
  • During the past decade, many electrical transmission tower structures have failed during downburst events. This study is a part of a research program aimed to understand the behaviour of transmission lines under such localized wind events. The present study focuses on assessing the behaviour of self supported transmission line towers under downburst loading. A parametric study is performed to determine the critical downburst configurations causing maximum axial forces for various members of a tower. The sensitivity of the internal forces developing in the tower's members to changes in the downburst size and location was studied. The structural behaviour associated with the critical downburst configurations is described and compared to the behaviour under 'normal' wind loads.

Simulation of Voltage and Current Distributions in Transmission Lines Using State Variables and Exponential Approximation

  • Dan-Klang, Panuwat;Leelarasmee, Ekachai
    • ETRI Journal
    • /
    • 제31권1호
    • /
    • pp.42-50
    • /
    • 2009
  • A new method for simulating voltage and current distributions in transmission lines is described. It gives the time domain solution of the terminal voltage and current as well as their line distributions. This is achieved by treating voltage and current distributions as distributed state variables (DSVs) and turning the transmission line equation into an ordinary differential equation. Thus the transmission line is treated like other lumped dynamic components, such as capacitors. Using backward differentiation formulae for time discretization, the DSV transmission line component is converted to a simple time domain companion model, from which its local truncation error can be derived. As the voltage and current distributions get more complicated with time, a new piecewise exponential with controllable accuracy is invented. A segmentation algorithm is also devised so that the line is dynamically bisected to guarantee that the total piecewise exponential error is a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segmenting the line before starting the simulation.

  • PDF

765 kV 송전선로의 345 kV 운전에 따른 계통 해석 (The analysis result of temporary operation of 765 kV transmission line as 345 kV rating)

  • 우정욱;심응보;강연욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1647-1649
    • /
    • 1998
  • This paper describes the power frequency voltage and its countermeasure when a 765 kV transmission line is directly connected to a 345 kV line and operated at 345 kV voltage. The summary of this result is as follows : The western route of 765 kV transmission line doesn't need any countermeasure to reduce the power frequency voltage at the receiving end. The eastern route of 765 kV transmission needs 100 Mvar(3 phase) capacity of shunt reactor at the receiving end to reduce the power frequency voltage. The use of shunt reactors in the 765 kV transmission lines has unexpected problems, one of which is induction of high voltages on a de-energized circuit of two parallel lines. This paper examined the problem of resonance on two parallel transmission circuits in one routes.

  • PDF

Capacity assessment of existing corroded overhead power line structures subjected to synoptic winds

  • Niu, Huawei;Li, Xuan;Zhang, Wei
    • Wind and Structures
    • /
    • 제27권5호
    • /
    • pp.325-336
    • /
    • 2018
  • The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.

Study on Thermal Load Capacity of Transmission Line Based on IEEE Standard

  • Song, Fan;Wang, Yanling;Zhao, Lei;Qin, Kun;Liang, Likai;Yin, Zhijun;Tao, Weihua
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.464-477
    • /
    • 2019
  • With the sustained and rapid development of new energy sources, the demand for electric energy is increasing day by day. However, China's energy distribution is not balanced, and the construction of transmission lines is in a serious lag behind the improvement of generating capacity. So there is an urgent need to increase the utilization of transmission capacity. The transmission capacity is mainly limited by the maximum allowable operating temperature of conductor. At present, the evaluation of transmission capacity mostly adopts the static thermal rating (STR) method under severe environment. Dynamic thermal rating (DTR) technique can improve the utilization of transmission capacity to a certain extent. In this paper, the meteorological parameters affecting the conductor temperature are analyzed with the IEEE standard thermal equivalent equation of overhead transmission lines, and the real load capacity of 220 kV transmission line is calculated with 7-year actual meteorological data in Weihai. Finally, the thermal load capacity of DTR relative to STR under given confidence is analyzed. By identifying the key parameters that affect the thermal rating and analyzing the relevant environmental parameters that affect the conductor temperature, this paper provides a theoretical basis for the wind power grid integration and grid intelligence. The results show that the thermal load potential of transmission lines can be effectively excavated by DTR, which provides a theoretical basis for improving the absorptive capacity of power grid.

노후 가공송전선의 수명과 열용량의 평가 (Evaluation for Lifetime and Thermal Ratings for Aged Overhead Transmission Lines)

  • 김성덕
    • 전기전자학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2012
  • 적절한 송전용량으로 전력공급을 안정하게 유지하기 위하여 노후 가공송전선의 열용량이나 수명 평가가 더욱 중요한 관심사가 되었다. 부하정격과 이도/이격거리 모두는 송전용량을 결정하는 중요한 요소들이다. 국내의 2회선 송전선로에 대한 열용량 및 도체수명을 평가하기 위하여, 전기설비기술기준은 물론 이도 및 지상고에 대한 설계기준들이 검토된다. 상정사고를 가정하여 도체온도와 이도를 계산하고 부하용량을 증대시키기 위한 방안이 모색되었다. 본 논문에서는 노후 도체에 대한 열용량과 한계이도를 적절히 평가함으로써, 기존 전력계통의 신뢰성을 보장하기 위한 개선 방안이 제시되었다.