• Title/Summary/Keyword: transmission line system

Search Result 1,293, Processing Time 0.025 seconds

A Study on the Design of the Terminal Repeater System for 565 Mb/s Optical Fiber Transmission (565 Mb/s 광전송용 단국중계장치 설계에 관한 연구)

  • 유봉선;박병철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.10
    • /
    • pp.829-841
    • /
    • 1990
  • On assuming that the transmission speed of the original information is the fifth-order transmission speed of the Korea digital multiplex hierarchy (564.992Mb/s), this paper proposes a new structure of the transmission line frame at the terminal repeater system, in order to not only maintain and conserve 565Mb/s optical fiber transmission system but also make the B.S.I. of digital communication network for the optical transmission. And the structure uses the mBIZ transmission line code, which is considered the optimal transmission line code of conventional transmission line codes. System hardware of the transmission line frame structure proposed in this paper is consisted by a method of pulse stuffing after converting the speed of the original information signal sequence at the terminal repeater system for 565Mb/s optical transmission. As a result of this, we can prevent the optical transmission system from a domino phenomenon, the phenomenon of the continuous error multiplication of systems by the transmission error, and suppress timing jitter and the identical consecutive digit number. And also we can improve SNR of the optical transmission system about 2dB because of raising total BER at the optical terminal system up to 10.

  • PDF

The critical angle of seismic incidence of transmission tower-line system based on wavelet energy method

  • Tian, Li;Dong, Xu;Pan, Haiyang;He, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.387-398
    • /
    • 2019
  • On the basis that ground motions may arrive at a structure from any horizontal direction and that different directions of seismic incidence would result in different structural dynamic responses, this paper focuses on orienting the crucial seismic incidence of transmission tower-line systems based on the wavelet energy method. A typical transmission tower-line system is chosen as the case study, and two finite element (FE) models are established in ABAQUS, with and without consideration of the interaction between the transmission towers and the transmission lines. The mode combination frequency is defined by considering the influence of the higher-order modes of the structure. Subsequently, wavelet transformation is performed to obtain the total effective energy input and the effective energy input rate corresponding to the mode combination frequency to further judge the critical angle of seismic incidence by comparing these two performance indexes under different seismic incidence angles. To validate this approach, finite element history analysis (FEHA) is imposed on both FE models to generate comparative data, and good agreement is found. The results demonstrate that the wavelet energy method can forecast the critical angle of seismic incidence of a transmission tower-line system with adequate accuracy, avoiding time-consuming and cumbersome computer analysis. The proposed approach can be used in future seismic design of transmission tower-line systems.

Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Dong, Xu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.305-315
    • /
    • 2019
  • Extremely long-span transmission tower-line system is an indispensable portion of an electricity transmission system, and its failures or collapse can impact on the entire electricity grid, affect the modern life, and cause great economic losses. It is therefore imperative to investigate the failure and safety of the transmission tower subjected to ground motions. In the present study, a detailed finite element (FE) model of a representative extremely long-span transmission tower-line system is established. A segmental damage indicator (SDI) is proposed to quantitatively assess the damage level of each segment of the transmission tower under earthquakes. Additionally, parametric studies are conducted to investigate the influence of different ground motions and incident angles on the ultimate capacity and weakest segment of the transmission tower. Finally, the collapse fragility curve in terms of the maximum SDI value and PGA is plotted for the exampled transmission tower. The results show that the proposed SDI can quantitatively assess the damage level of the segments, and thus determine the ultimate capacity and weakest segment of the transmission tower. Moreover, the different ground motions and incident angles have a significant influence on the SDI values of the transmission tower, and the collapse fragility curve is utilized to evaluate the collapse resistant capacity of the transmission tower subjected to ground motions.

The Best Line Choice for Transmission System Expansion Planning on the Side of the Highest Reliability Level

  • Sungrok Kang;Trungtinh Tran;Park, Jaeseok;Junmin Cha;Park, Daeseok;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.84-90
    • /
    • 2004
  • This paper presents a new method for choosing the best line for transmission system expansion planning considering the highest reliability level of the transmission system. Conventional methodologies for transmission system expansion planning have been mainly focused on economics, which is the minimization of construction costs. However, quantitative evaluation of transmission system reliability is important because successful operation and planning of an electric power system under the deregulated electricity market depends on transmission system reliability management. Therefore, it is expected that the development of methodology for choosing the best lines considering the highest transmission system reliability level while taking into account uncertainties of transmission system equipment is useful for the future. The characteristics and effectiveness of the proposed methodology are illustrated by the case study using a MRBTS.

Research on vibration control of a transmission tower-line system using SMA-BTMD subjected to wind load

  • Tian, Li;Luo, Jingyu;Zhou, Mengyao;Bi, Wenzhe;Liu, Yuping
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.571-585
    • /
    • 2022
  • As a vital component of power grids, long-span transmission tower-line systems are vulnerable to wind load excitation due to their high flexibility and low structural damping. Therefore, it is essential to reduce wind-induced responses of tower-line coupling systems to ensure their safe and reliable operation. To this end, a shape memory alloy-bidirectional tuned mass damper (SMA-BTMD) is proposed in this study to reduce wind-induced vibrations of long-span transmission tower-line systems. A 1220 m Songhua River long-span transmission system is selected as the primary structure and modeled using ANSYS software. The vibration suppression performance of an optimized SMA-BTMD attached to the transmission tower is evaluated and compared with the effects of a conventional bidirectional tuned mass damper. Furthermore, the impacts of frequency ratios and SMA composition on the vibration reduction performance of the SMA-BTMD are evaluated. The results show that the SMA-BTMD provides superior vibration control of the long-span transmission tower-line system. In addition, changes in frequency ratios and SMA composition have a substantial impact on the vibration suppression effects of the SMA-BTMD. This research can provide a reference for the practical engineering application of the SMA-BTMD developed in this study.

An Approach to Allocating Transmission System Reliability Cost (송전계통의 신뢰도 비용 배분 방만에 대한 연구)

  • Jeong, Gu-Hyeong;Sin, Yeong-Gyun;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.183-187
    • /
    • 2002
  • The efficient and rational transmission tariff structure is one of the crucial factors in creation of fair and competitive electricity markets. Transmission charge can be largely categorized into the line usage charge, system reliability charge, access charge and others. Any transmission tariff should be able to reflect these cost components reasonably. This paper suggests an approach amenable to allocating the transmission reliability costs reasonably with reflection of line sensitivity and line outage rate.

Development of a Remote Inspection Method and Device for Line Sleeves on Transmission Line (송전선로 직선슬리브 원격점검 방법 및 장치)

  • Lee, Jae-Kyung;Jung, Nam-Joon;Kim, Ho-Ki;Kim, Kyeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.206-213
    • /
    • 2011
  • Line sleeves, which used to connect ACSR cables when transmission lines were constructing, sometimes cause power transmission failure due to deterioration and corrosion. Therefore, power transmission line should be inspected regularly to prevent national disaster. Current inspection tool detects insertion length of transmission line on line sleeves, the inspection tool includes enormous error by operator. Moreover, the system is not controlled remotely, negligent accident would be caused while inspecting. To deal with those problems, KEPCO reviewed several ways to inspect line sleeves and proposes new method to inspect line sleeve by measuring magnetic flex which penetrate junction of steel and aluminum sleeve. The developed inspection tool is reliable enough to detect eccentric sleeves. Also, the developed inspection device was applied on actual transmission line and verified its effectiveness.

Forced reclosing in transmission line (송전선의 강제재폐로)

  • 김준현
    • 전기의세계
    • /
    • v.29 no.6
    • /
    • pp.401-409
    • /
    • 1980
  • This paper deals with the implementation of forced reclosing the transmission line. Because the ground circuit breaker method decrease the secondary arc current sufficiently, the reclosing time can be reduced. As the secondary arc current is large and its residual time is long in UHV transmission line, this method is more effective in that system. The resistance of ground circuit breaker which minimize the secondary arc current is determined according to the system voltage and the length of transmission line.

  • PDF

Analysis of system power flow margin on replacement of transmission line to DC line (송전선로 DC화에 따른 융통조류 마진 분석)

  • Hwang, Sungchul;Lee, Jaehyeong;Hwang, Pyungik;Yoon, Minhan;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.420-421
    • /
    • 2015
  • Recently construction of new transmission line is getting harder because of social hostility to transmission tower. Howevere, load is converged in metropolitan area and power plants near this area are old and life of generator will end soon. Therefore, power to supply load in this area should be transmitted from east coast area and southern area. For these reasons, securement of transmission capacity without new transmission line construction is important. In this paper, effect of one circuit AC line change to DC transmission at the same transmission tower on the system available transfer capacity is analyzed.

  • PDF

Development of the Transmission Line Design System for Overseas Projects (해외사업용 송전선로 설계시스템 개발)

  • Min, Byeong-Wook;Kim, Jong-Hwa;Choi, Seok-June;Bang, Hang-Kwon;Choi, Han-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.129-131
    • /
    • 2006
  • KEPCO constructed the first 765kV 2 circuit transmission line in the world with its home grown technologies. Through this 765kV transmission system project, KEPCO accumulated experience and technologies related to the 765 kV power system. Based on the successful completion of the 765kV transmission project, KEPCO is conducting overseas business by using its abundant experience and know-how. In particular, KEPCO developed the training course for power system, called the ATT (Advanced Transmission Technology) training courses for overseas business, especially for developing countries. Therefore, KEPCO developed the "Transmission line design system for overseas projects". This system supports the calculation of wind pressure load, tower design, wire selection, insulation design, etc. by applying the meteorological data of foreign countries and design standards. And this system is applied to the training program so that the trainees can design the optimal transmission line for their own countries.

  • PDF