• Title/Summary/Keyword: transmission line model

Search Result 530, Processing Time 0.024 seconds

Critical seismic incidence angle of transmission tower based on shaking table tests

  • Tian, Li;Dong, Xu;Pan, Haiyang;Gao, Guodong;Xin, Aiqiang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.251-267
    • /
    • 2020
  • Transmission tower-line systems have come to represent one of the most important infrastructures in today's society. Recent strong earthquakes revealed that transmission tower-line systems are vulnerable to earthquake excitations, and that ground motions may arrive at such structures from any direction during an earthquake event. Considering these premises, this paper presents experimental and numerical studies on the dynamic responses of a 1000 kV ultrahigh-voltage (UHV) transmission tower-line system under different seismic incidence angles. Specifically, a 1:25 reduced-scale experimental prototype model is designed and manufactured, and a series of shaking table tests are carried out. The influence of the seismic incidence angle on the dynamic structural response is discussed based on the experimental data. Additionally, the incidence angles corresponding to the maximum peak displacement of the top of the tower relative to the ground (referred to herein as the critical seismic incidence angles) are summarized. The experimental results demonstrate that seismic incidence angle has a significant influence on the dynamic responses of transmission tower-line systems. Subsequently, an approximation method is employed to orient the critical seismic incidence angle, and a corresponding finite element (FE) analysis is carried out. The angles obtained from the approximation method are compared with those acquired from the numerical simulation and shaking table tests, and good agreement is observed. The results demonstrate that the approximation method can properly predict the critical seismic incidence angles of transmission tower-line systems. This research enriches the available experimental data and provides a simple and convenient method to assess the seismic performance of UHV transmission systems.

An Evaluation of Weather Model for Increasing Ampacity in KEPCO's Overhead Transmission Lines (한국전력 가공송전선의 허용전류를 증가시키기 위한 기상모델의 평가)

  • 김성덕
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.125-134
    • /
    • 2004
  • The new deregulated economic environment in the power utility market is forcing fundamental changes in the investment and operational decisions regarding transmission lines. Hence, it has come to be an important issue to evaluate their current utility in order to increase conductor ampacity based on conservative assumptions of worst case weather conditions. Static thermal rating has born still applied in most power companies worldwide, however some of them have been done various trials such as monitoring dynamic line ratings to increase line ratings in real time. This study is an attempt to access the static line ratings in Korea Electric Power Corporation(KEPCO) transmission lines, which were specified by weather model. Several environmental performances for determining static line ratings are examined by using the past weather data of Korean Meteorological Administration. As a result, it is shown that seasonal or regional line ratings could be adopt to the KEPCO's transmission lines, and their line ratings could be more increased without refurbishing current conductors in service to new high-temperature ones.

Rotational Viscoelastic Dampers for the Mitigation of Wind Loads on Transmission Tower Transferred from Transmission Lines (송전선에 의해 송전철탑에 전달되는 풍하중 저감을 위한 회전형 점탄성감쇠기)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.420-427
    • /
    • 2006
  • In this study, wind loads transmitted to a transmission tower from transmission lines are mitigated using rotational viscoelastic dampers. First, the wind load characteristics in a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower. From the result of the stochastic analysis, the background component of the overturing moment caused by the wind loads acting on the transmission lines are found to have considerable portion in the total overturning moment. Based on this observation result, a strategy Installing rotational viscoelastic damper (VED) between tower arm and transmission line is proposed for the mitigation of the transmission line reactions, which play a role as dynamic loads on a transmission tower. For the purpose of verification, time history analysis is conducted for different wind velocities and VED parameters. The analysis result shows that the rotational VED is effective for the mitigation of the background component rather than the resonance component of the transmission line reactions and achieves the reduction ratio of 50% even for higher wind speed.

Analysis of Control Performance and Response of System using Scaled Model for SSSC (축소모델을 이용한 SSSC의 제어효과 및 계통응답 분석)

  • Choi, Jong-Yun;Hong, Soon-Wook;Jang, Byung-Hoon;Yoon, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.202-204
    • /
    • 2000
  • This paper describes the theory and experimental result of scaled model of SSSC. The SSSC, a solid-state voltage source inverter coupled with a transformer, is connected in series with a transmission line. Injected voltage is almost in quadrature with the line current, thereby emulating an inductive or a capacitive reactance in series with the transmission line.

  • PDF

Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Dong, Xu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.305-315
    • /
    • 2019
  • Extremely long-span transmission tower-line system is an indispensable portion of an electricity transmission system, and its failures or collapse can impact on the entire electricity grid, affect the modern life, and cause great economic losses. It is therefore imperative to investigate the failure and safety of the transmission tower subjected to ground motions. In the present study, a detailed finite element (FE) model of a representative extremely long-span transmission tower-line system is established. A segmental damage indicator (SDI) is proposed to quantitatively assess the damage level of each segment of the transmission tower under earthquakes. Additionally, parametric studies are conducted to investigate the influence of different ground motions and incident angles on the ultimate capacity and weakest segment of the transmission tower. Finally, the collapse fragility curve in terms of the maximum SDI value and PGA is plotted for the exampled transmission tower. The results show that the proposed SDI can quantitatively assess the damage level of the segments, and thus determine the ultimate capacity and weakest segment of the transmission tower. Moreover, the different ground motions and incident angles have a significant influence on the SDI values of the transmission tower, and the collapse fragility curve is utilized to evaluate the collapse resistant capacity of the transmission tower subjected to ground motions.

Development of Tie Line Constrained Equivalent Assisting Generator Model (TEAG) For Reliability Evaluation of NEAREST -Ⅲ

  • Tran TrungTinh;Choi Jae-Seok;Kim Hyung-Chul;Moon Seung-Il;Billinton Roy
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.31-39
    • /
    • 2005
  • This paper illustrates a tie line constrained equivalent assisting generator (TEAG) model considering forced outage rates of transmission systems for reliability evaluation of interconnected power systems. Interconnections between power systems can provide improved levels of reliability. It is expected that the TEAG model developed in this paper will prove useful in the solution to problems related to the effect of transmission system uncertainties in the reliability evaluation of interconnected power systems. It is important that interconnection between power systems can provide the improved levels of reliability. Therefore, It is expected that the TEAG model developed in this study will provide some solution among many problems for interconnected power systems as an optimal tie line capacity and a connected point between assisting systems and assisted system. The characteristics and validity of this developed TEAG considering transmission systems are introduced by case study of three IEEE MRTS interconnected.

8-port Coupled Transmission Line Modeling of KSATR ICRF Antenna and Comparison with Measurement (커플링이 고려된 KSTAR ICRF 안테나의 8포트 전송선 회로 모델링 및 측정 결과 비교)

  • Kim, S.H.;Wang, S.J.;Hwang, C.K.;Kwak, J.G.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.72-80
    • /
    • 2010
  • It is very important to predict and analyze the change of voltage and current distribution of current strap, abnormal voltage distribution of transmission line and resonance phenomenon by coupling between current straps for more stable operation of ICRF system. In this study, to understand those phenomena by coupling, 8-port coupled transmission line model is completed by appling S-parameter measured in the prototype KSTAR ICRF antenna to the model. The determined self-inductance, mutual-inductance and capacitance of antenna straps are shown to be lower than that calculated from 2D approximate model due to finite length of strap. The coupled transmission line model of current strap will be utilized to the operation of ICRF system of KSTAR in the future.

Dynamic-state Model[1] Transmission Line Protective Relay Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 송전선로 보호 계전기의 동특성 모델[1])

  • Lee, H.H.;Kim, C.H.;Cho, K.B.;Chang, B.T.;Lee, J.W.;Ahn, S.P.;Lee, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.348-350
    • /
    • 2003
  • In recent years, with the continuous development of modem power system, the need for high performance protection to meet the customers' requests for more stable and reliable power supply has become increasingly emphasized. So, there is urgent need for a proper testing platform about not only existing digital protection relay but also new digital protection relay on the transmission line. It is also dynamic-state test which can test the performance of digital relay. This paper suggests basic system model for testing transmission line protection using PSCAD/EMTDC, and presents the process of the component modeling in the basic system.

  • PDF

Investigation on Contact Resistance of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors with Various Electrodes by Transmission Line Method

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.139-141
    • /
    • 2015
  • Contact resistance of interface between the channel layers and various S/D electrodes was investigated by transmission line method. Different electrodes such as Ti/Au, a-IZO, and multilayer of a-IGZO/Ag/a-IGZO were compared in terms of contact resistance, using the transmission line model. The a-IGZO TFTs with a-IGZO/Ag/a-IGZO of S/D electrodes showed good performance and low contact resistance due to the homo-junction with channel layer.

Improvement of the Conductor Temperature Calculation Algorithm for Calculating the Allowable Current in the Underground Channel (지중관로에서의 실제 허용전류 산출을 위한 도체온도 계산 알고리즘 개선에 관한 연구)

  • Lee, Hyang-Beom;Lee, Byung-Chul;Kim, Jung-Hoon;Nam, Yong-Hyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.352-357
    • /
    • 2018
  • In this paper, the improvement of the conductor temperature calculation algorithm is studied. The allowable current of the underground transmission line is determined by the conductor temperature limit. Usually to calculate the allowable current limit, the conductor temperature is assumed in the most worst environment condition. It is possible to increase the transmission capacity if the actual burial environment is considered. Therefore, in this paper an algorithm is proposed to calculate the conductor temperature by distinguishing two area of a underground transmission line condition - the manhole where the temperature sensor can be installed and the underground transmission line in which the temperature sensor can not be installed easily. When calculating the conductor temperature by the underground line in the pipeline, the existing standard describes each environment as a single soil heat resistance and one ambient temperature. In order to compensate this situation, thermal resistance model that can take into consideration the ground surface temperature and under ground temperature is proposed. It is shown that the accuracy of the proposed model is increased compared with the existing standard calculation result.