• Title/Summary/Keyword: transmission line element

Search Result 178, Processing Time 0.025 seconds

Implementation of a MAC protocol in ATM-PON

  • Kim, Tea-Min;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.586-597
    • /
    • 2004
  • MAC (Medium Access Control) protocol is necessary for a OLT (Optical Line Termination) to allocate bandwidth to ONUs (Optical Network Units) dynamically in ATM PON (Passive Optical Network) operated in a kind of optical subscriber network having tree topology. The OLT collect information about ONUs and provide all permission with each ONU effectively by means of MAC protocol. Major functions of MAC protocol are composed of the algorism for distributing permission demanded by a ONU dynamically and allocation all permission used in APON properly. Sometimes MAC get to be a element of limiting the whole operation speed and occupy a most frequent operation part of the TC (Transmission Convergence) function module so it have to be designed to guarantee the best quality for each traffic. This paper introduce the way of implementation of a algorism which satisfy all of the upper renditions. This MAC algorism allocate bandwidth according to a number of working ONU and the information of the queue length dynamically and distribute permission for same interval to minimize delay variation of each ONU cell. MAC scheduler for the dynamic bandwidth allocation which is introduced in this paper has look-up table structure that makes programming possible. This structure is very suitable for implementation and operated in high speed because it require very simple and small chip size.

Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode

  • Nguyen, Hung Tai;Tran, Thi Lan;Nguyen, Dang Thanh;Shin, Eui-Chol;Kang, Soon-Hyung;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.244-260
    • /
    • 2018
  • Issues in the electrical characterization of semiconducting photoanodes in a photoelectrochemical (PEC) cell, such as the cell geometry dependence, scan rate dependence in DC measurements, and the frequency dependence in AC measurements, are addressed, using the example of a $TiO_2$ photoanode. Contrary to conventional constant phase element (CPE) modeling, the capacitive behavior associated with Mott-Schottky (MS) response was successfully modeled by a Havriliak-Negami (HN) capacitance function-which allowed the determination of frequency-independent Schottky capacitance parameters to be explained by a trapping mechanism. Additional polarization can be successfully described by the parallel connection of a Bisquert transmission line (TL) model for the diffusion-recombination process in the nanostructured $TiO_2$ electrode. Instead of shunt CPEs generally employed for the non-ideal TL feature, TL models with ideal shunt capacitors can describe the experimental data in the presence of an infinite-length Warburg element as internal interfacial impedance - a characteristic suggested to be a generic feature of many electrochemical cells. Fully parametrized impedance spectra finally allow in-depth physicochemical interpretations.

Design of Dual-Band Power Amplifier for the RFID Frequency-Band (RFID 대역에서 동작하는 이중 대역 전력증폭기 설계)

  • Kim, Jae-Hyun;Hwang, Sun-Gook;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.376-379
    • /
    • 2014
  • In this paper, we designed more improving a dual-band power amplifier than the transceiver of RFID reader that operates at 910 MHz and 2.45 GHz. A dual-band power amplifier has two circuits. One matching circuit is composed lumped element in the band of 910 MHz. The other matching circuit using distributed element in the high band of 2.45 GHz. So, this dual-band power amplifier works as Band Rejection Filter in the band of 910 MHz but in the high band of 2.45 GHz works as Band Pass Filter. Therefore, this is composed a microstrip transmission line. A power amplifier is showed gains of 8 dB output power at 910 MHz and 1.5 dB output power at 2.45 GHz. If input power is 10 dBm, both of bands output 20 dBm.

Dual-Band Negative Group Delay Circuit Using λ/4 Composite Right/Left-Handed Short Stubs

  • Choi, Heung-Jae;Mun, Tae-Su;Jeong, Yong-Chae;Lim, Jong-Sik;Eom, Soon-Young;Jung, Young-Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.76-82
    • /
    • 2011
  • In this paper, a novel design for a dual-band negative group delay circuit (NGDC) is proposed. Composite right/left-handed (CRLH) ${\lambda}/4$ short stubs are employed as a dual-band resonator. A CRLH ${\lambda}/4$ short stub is composed of a typical transmission line element as the right-handed component and a high-pass lumped element section as the left-handed component. It is possible to simultaneously obtain open impedances at two separate frequencies by the combination of distinctive phase responses of the right/left-handed components. Negative group delay (NGD) can be obtained at two frequencies by using dual-band characteristics of the CRLH stub. In order to achieve a bandwidth extension, the proposed structure consists of a two-stage dual-band NGDC with different center frequencies connected in a cascade. According to the experiment performed, with wide-band code division multiple access (WCDMA) and worldwide interoperability for microwave access (WiMAX), NGDs of $-3.0{\pm}0.4$ ns and $-3.1{\pm}0.5$ ns are obtained at 2.12~2.16 GHz and 3.46~3.54 GHz, respectively.

Dynamic Response Analysis of 2.5MW Wind Turbine Gearbox with Flexible Pins (유연핀을 적용한 2.5MW급 풍력발전기용 기어박스의 동응답 해석)

  • Cho, Jin-Rae;Jeong, Ki-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This study is concerned with the numerical investigation of dynamic characteristics of 2.5MW-class wind turbine gearbox in which the misalignment improvement of plenary gear shafts by the flexible pins and the dynamic impact response are analyzed by the finite element method. The tooth contact between gears is modelled using the line element having the equivalent tooth stiffness and the contact ratio to accurately and effectively reflect the load transmission in the internal complex gear system. The equivalent tooth stiffness is calculated by utilizing the tooth deformation analysis and the impulse torque is applied to the input shaft for the dynamics response characteristic analysis. Through the numerical experiments, the equivalent tooth stiffness model was validated and the misalignment improvement of planetary gear shafts was confirmed from the comparison with the cases of fixed shafts at one and both ends.

The Design of 2.4 GHz Band LTCC Bandpass Filter using $\lambda$/4 Hairpin Resonators ($\lambda$/4 Hairpin 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 필터의 설계)

  • Sung Gyu-Je
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.7-11
    • /
    • 2004
  • In this paper, a $\lambda$/4 hairpin resonator is applied to reduce the size of planar resonators for a 2.4 GHz Band LTCC MLC bandpass filter. The $\lambda$/4 hairpin resonator operates as stepped impedance resonator (SIR) without changing the width of the planar resonator. It is composed of two sections those are parallel coupled line and transmission line. The characteristic impedance of two sections is different each other. The design formulas of the bandpass filter using the coupling element at the arbitrary position are derived from even and odd-mode analysis. The formulas can take account of the arbitrary coupling of lumped and/or distributed resonators. The advantage of this filter is its abilities to change freely the coupling structure between two resonators. Experimental bandpass filters for 2.4 GHz Band are implemented and their performances are shown.

  • PDF

Calculation of the Electromagnetic Wave Ields Near Electric Power Lines (전력선로 근방의 전자파 전자계 계산)

  • Kang, Dae-Ha;Lee, Young-Sik;Park, Jung-Eun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.79-88
    • /
    • 2008
  • In this study electromagnetic fields near electric power lines were derived by dipole antenna theory and electromagnetic fields near 3 phase power lines with vertical configurations were formulated and could be computed easily using these formula. It seems that those formula could be applicable to the consideration of electromagnetic fields during the design of transmission and distribution lines. Those formulated equations on elements of electromagnetic fields were applied to the model of a transmission-line system and were calculated by Matlab programs. The calculation results are follows. For variation of horizontal distance profiles of $E_y$ and $B_z$ are same each other, and also those of $B_y$ and $E_z$ are same each other. This means that coupled elements of E and B are perpendicular each other and have the propagation direction of the right-hand system such as $x{\rightarrow}E_y{\rightarrow}B_z$. Resultant electric field E is dominated by the element $E_y$ and resultant magnetic field B is dominated by the element $B_z$.

A Study of Dual-Frequency Microstrip Patch Antenna (이중공진 마이크로스트립 패치 안테나에 관한 연구)

  • 장준영;김준모;윤영중;엄순영;전순익
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.515-525
    • /
    • 1998
  • In this paper, for both transmission and reception with single antenna system of satellite communication, dual-frequency antennas which operate simultaneously at 12.5 GHz and at 14.25 GHz are designed, constructed and measured. Also by using dual feeding structure, the problems of single-fed dual-frequency antenna such as the separation of transmitting and receiving signals and single polarization, are solved. Microstrip patch as a radiation element of dual-fed dual-frequency antenna has width and length which are the resonance lengths of the corresponding frequencies for transmission and reception, respectively. The effects of the feed line on the other frequency feeding are minimized with the optimal matching scheme for the feed lines. For solving the space problems of dual-fed two-dimensional array antennas, microstrip-line and coaxial probe feedings are used for each frequency and a two-dimensional $2\times2$ array antenna was designed and measured their characteristics. The experimental results show that errors of resonance frequencies are less than 1.44%, the return losses are less than -21 dB and the isolations between two feeding ports are less than -21 dB. The characteristics of radiation patterns of dual frequency microstrip antenna are measured and evaluated. The directivities, sidelobe levels and cross polarizations are also measured and compared with the simulations. The results show some errors due to the misalignment of coaxial probe feeding.

  • PDF

A Planar Implementation of a Negative Group Delay Circuit (평면 구조의 마이너스 군지연 회로 설계)

  • Jeong, Yong-Chae;Choi, Heung-Jae;Chaudhary, Girdhari;Kim, Chul-Dong;Lim, Jong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.236-244
    • /
    • 2010
  • In this paper, a planar structure negative group delay circuit(NGDC) is proposed to overcome the limited availability of the component values required for the prototype lumped element(LE) NGDC design. From the prototype LE circuit analysis, general design equations and the conditions to obtain the NGD are derived and illustrated. Then the LE circuit is converted into the planar structure by applying the transmission line resonator(TLR) theory. As a design example, the LE NGDC and the proposed planar structure NGDC are designed and compared. To estimate the commercial applicability, 2-stage reflection type planar NGDC with -5.6 ns of total group delay, -0.2 dB of insertion loss, and 30 MHz of bandwidth together with 0.1 dB and 0.5 ns of the magnitude and group delay flatness, respectively, for Wideband Code Division Multiple Access(WCDMA) downlink band is fabricated and demonstrated. Also, to show the applicability of the proposed NGDC, we have configured a simple signal cancellation loop and obtained good loop suppression performance.

Pogo Suppressor Design of a Space Launch Vehicle using Multiple-Objective Optimization Approach (다목적함수 최적화 기법을 이용한 우주발사체의 포고억제기 설계)

  • Yoon, NamKyung;Yoo, JeongUk;Park, KookJin;Shin, SangJoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • POGO is a dynamic axial instability phenomenon that occurs in liquid-propelled rockets. As the natural frequencies of the fuselage and those of the propellant supply system become closer, the entire system will become unstable. To predict POGO, the propellant (oxidant and fuel) tank in the first stage is modeled as a shell element, and the remaining components, the engine and the upper part, are modeled as mass-spring, and structural analysis is performed. The transmission line model is used to predict the pressure and flow perturbation of the propellant supply system. In this paper, the closed-loop transfer function is constructed by integrating the fuselage structure and fluid modeling as described above. The pogo suppressor consists of a branch pipe and an accumulator that absorbs pressure fluctuations in a passive manner and is located in the middle of the propellant supply system. The design parameters for its design optimization to suppress the decay phenomenon are set as the diameter, length of the branch pipe, and accumulator. Multiple-objective function optimization is performed by setting the energy minimization of the closed loop transfer function in terms of to the mass of the pogo suppressor and that of the propellant as the objective function.