• Title/Summary/Keyword: transmission line

Search Result 3,298, Processing Time 0.031 seconds

Characteristics of Insertion Loss of Transmission Line with Different Line Length Crossing a Rectangular Aperture in a Backplane (백 플레인의 개구를 통과하는 길이가 다른 전송 선로의 삽입 손실 특성)

  • Jung, Sung-Woo;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.237-243
    • /
    • 2008
  • This paper presents the backplane effects for two-wire transmission line with different line length crossing the rectangular aperture in an infinite ground backplane. The FDTD method is used to determine the characteristics of the backplane insertion loss and return loss of the transmission line in accordance with the transmission line spacing and additional wire lengths. The results show that the insertion gain is obtained for the narrow spacing of the transmission line and the insertion loss is appeared for the transmission line with the additional wire The measurements of return loss are performed to verify the theoretical analysis.

An Approach to Allocating Transmission System Reliability Cost (송전계통의 신뢰도 비용 배분 방만에 대한 연구)

  • Jeong, Gu-Hyeong;Sin, Yeong-Gyun;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.183-187
    • /
    • 2002
  • The efficient and rational transmission tariff structure is one of the crucial factors in creation of fair and competitive electricity markets. Transmission charge can be largely categorized into the line usage charge, system reliability charge, access charge and others. Any transmission tariff should be able to reflect these cost components reasonably. This paper suggests an approach amenable to allocating the transmission reliability costs reasonably with reflection of line sensitivity and line outage rate.

Study on the Estimation of Seasonal Ambient Current for the Application of Ambient Adjusted Line Rating(AAR) in Overhead Transmission Lines Using Risk Tolerance(RT) Method (가공송전선로의 AAR 적용 시 Risk Tolerance 분석을 이용한 계절별 최대 허용전류 산정 및 적용에 관한 연구)

  • Lee, Jaegul;Bae, Youngjae;Song, Jiyoung;Shin, Jeonghoon;Kim, Yonghak;Kim, Taekyun;Yoon, Yongbeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.7-15
    • /
    • 2017
  • Ambient Adjusted line Rating(AAR) method for overhead transmission lines considering Risk Tolerance(RT) was proposed in this paper. AAR is suitable for system operators to plan their operation strategy and maintenance schedule because this can be designed as a seasonal line rating. Several candidate transmission lines are chosen to apply the proposed method in the paper. As a result, it is shown that system reliability was significantly enhanced through maximizing transfer capability, solving the system constraints.

Equivalent Transmission-Line Sections for Very High Impedances and Their Application to Branch-Line Hybrids with Very Weak Coupling Power

  • Ahn, Hee-Ran;Kim, Bum-Man
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.85-97
    • /
    • 2009
  • As operating frequency is raised and as more integration with active and passive elements is required, it becomes difficult to fabricate more than 120 ${\Omega}$ characteristic impedance of a mierostrip line. To solve this problem, an equivalent high impedance transmission-line section is suggested, which consists mainly of a pair of coupled-line sections with two shorts. However, it becomes a transmission-line section only when its electrical length is fixed and its coupling power is more than half. To have transmission-line characteristics(perfect matching), independently of coupling power and electrical length, two identical open stubs are added and conventional design equations of evenand odd-mode impedances are modified, based on the fact that the modified design equations have the linear combinations of conventional ones. The high impedance transmission-line section is a passive component and therefore should be perfectly matched, at least at a design center frequency. For this, two different solutions are derived for the added open stub and two types of high impedance transmission-line sections with 160 ${\Omega}$ characteristic impedance are simulated as the electrical lengths of the coupled-line sections are varied. The simulation results show that the determination of the available bandwidth location depends on which solution is chosen. As an application, branch-line hybrids with very weak coupling power are investigated, depending on where an isolated port is located, and two types of branch-line hybrids are derived for each case. To verify the derived branch-line hybrids, a microstrip branch-line hybrid with -15 dB coupling power, composed of two 90$^{\circ}$ and two 270$^{\circ}$ transmission-line sections, is fabricated on a substrate of ${\varepsilon}_r$= 3.4 and h=0.76 mm and measured. In this case, 276.7 ${\Omega}$ characteristic impedance is fabricated using the suggested high impedance transmission-line sections. The measured coupling power is -14.5 dB, isolation and matching is almost perfect at a design center frequency of 2 GHz, showing good agreement with the prediction.

Periodically Corrugated Transmission Line Design for Crosstalk Reduction (Crosstalk 감소 효과를 갖는 주기적인 요철 모양의 전송 선로 설계)

  • Oh, Jang-Teak;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.774-783
    • /
    • 2012
  • In this paper, a periodically corrugated transmission line is proposed. The proposed transmission line can reduce crosstalk between transmission lines. The corrugated transmission line can adjust the amount of inductive coupling and capacitive coupling equally. Thus, the crosstalk is effectively reduced because the inductive coupling and capacitive coupling cancel each other. The corrugated transmission line is fabricated on RO4003 substrate with a dielectric constant of 3.38 and a thickness of 0.508 mm. The simulated far-end crosstalks of conventional transmission line and corrugated transmission line with a period of A=1 mm have maximum values of -3.6 dB and -22 dB, respectively, up to 30 GHz. Measurement results showed that far-end crosstalks of the conventional and corrugated transmission line have maximum values of -6.3 dB and -20.5 dB, respectively, up to 30 GHz.

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.

Risk assessment of transmission line structures under severe thunderstorms

  • Li, C.Q.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.773-784
    • /
    • 1998
  • To assess the collapse risk of transmission line structures subject to natural hazards, it is important to identify what hazard may cause the structural collapse. In Australia and many other countries, a large proportion of failures of transmission line structures are caused by severe thunderstorms. Because the wind loads generated by thunderstorms are not only random but time-variant as well, a time-dependent structural reliability approach for the risk assessment of transmission line structures is essential. However, a lack of appropriate stochastic models for thunderstorm winds usually makes this kind of analysis impossible. The intention of the paper is to propose a stochastic model that could realistically and accurately simulate wind loading due to severe thunderstorms. With the proposed thunderstorm model, the collapse risk of transmission line structures under severe thunderstorms is assessed numerically based on the computed failure probability of the structure.

Modeling of a Pneumatic Cylinder Position Control system Considering Transfer Characteristics of a Transmission Line (관로의 전달 특성을 고려한 공기압 실린더 위치 제어계의 모델링)

  • Jang, Ji-Seong;Kang, Bo-Sik;Ji, Sang-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.731-736
    • /
    • 2004
  • In this study, a linearized model of pneumatic cylinder position control system including transmission line is proposed. The transmission line using compressible fluid has a nonlinear transfer characteristics because that the frequency response of it is changed by the flowing state of the fluid. But, when the pressure difference between both sides of transmission line is low, the effect of resonance characteristics of it under high frequency range can be neglected because of the friction force and low pass characteristics of the position control system. Therefore, the transmission line can be modeled by second order transfer function and the natural frequency, damping ratio and gain are changed by the diameter and length of it. The effectiveness of the proposed model is proved by comparison of simulation results using proposed model with experimental results and simulation results using conventional model.

  • PDF

Force Control of a Pneumatic Driving System With a Long Transmission Line (전달관로를 고려한 공기압 구동장치의 힘 제어에 관한 연구)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.8-13
    • /
    • 2011
  • In the present study, a robust controller has been designed to control force for a pneumatic driving system considering the effect of a transmission line. Transfer characteristics of pneumatic transmission line should be changed according to the velocity of the air going through the transmission line. The designed controller is composed of two parts. The one is a feedback controller, which is composed of a stabilizing filter, a compensating filter of modelling error and a nominal model of the force control system, to compensate the influence of transmission line and improve the feedback characteristics of the control system, and, the other is a feedforward controller to achieve the control performance. Control results with the designed controller show that the robustness and performance of the control system are improved compared to the control results with a fixed gain controller.

Dynamic Modeling of Transmission Line Galloping Vibrations (송전선 갤러핑 진동에 대한 동적 모델링 연구)

  • Kwak, Moon K.;Koo, Jae-Ryang;Bae, Yong-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.518-522
    • /
    • 2014
  • This paper is concerned with the dynamic modeling of transmission line undergoing galloping vibrations. To this end, the kinetic and potential energies of a uniform wire vibrating in space are derived. The equations of motion suitable for numerical simulations are derived using the assumed mode method and Lagrange equation. The resulting equations of motion are expressed in matrix form. To cope with bundled transmission line, the spacer was modelled by a spring element. As a numerical example, a two-wire transmission line combined by spacers was considered. Natural vibration characteristics show that the in-plane vibrations of the transmission line appeared in low frequency range, which may lead to galloping.

  • PDF