• Title/Summary/Keyword: transmembrane protein

Search Result 282, Processing Time 0.039 seconds

Effects of Dyglomera® on leptin expression, pro-inflammatory cytokines, and adipocyte browning in 3T3-L1 cells

  • Da-Eun Min;Sung-Kwon Lee;Hae Jin Lee;Bong-Keun Choi;Dong-Ryung Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.186-196
    • /
    • 2023
  • Dyglomera® is an aqueous ethanol extract derived from the fruit and pods of Dichrostachys glomerata. A previous study has revealed that Dyglomera regulates adipogenesis and lipolysis by modulating AMP-activated protein kinase (AMPK) phosphorylation and increased expression levels of lipolysis-related proteins in white adipose tissue of high fat diet-induced mice and 3T3-L1 adipocyte cells. To further investigate mechanisms of Dyglomera, additional studies were performed using 3T3-L1 cells. Results revealed that Dyglomera downregulated adipogenesis by inhibiting the protein kinase B/mammalian target of rapamycin signaling pathway and reconfirmed that it downregulated gene expression levels of proliferator-activated receptor (PPAR)-γ, CCAAT enhancer binding protein α, sterol-regulation element-binding protein-1c. Dyglomera also reduced adipokines such as tumor necrosis factor alpha, interleukin-1β, and interleukin 6 by regulating leptin expression. Moreover, Dyglomera promoted beige-and-brown adipocyte-related phenotypes and regulated metabolism by increasing mitochondrial number and expression levels of genes such as T-box protein 1, transmembrane protein 26, PR domain 16, and cluster of differentiation 40 as well as thermogenic factors such as uncoupling protein 1, proliferator-activated receptor-gamma co-activator-1α, Sirtuin 1, and PPARα through AMPK activation. Thus, Dyglomera not only can inhibit adipogenesis, but also can promote lipolysis and thermogenesis and regulate metabolism by affecting adipokine secretion from 3T3-L1 adipocytes.

Multiple Regulation of Roundabout (Robo) Phosphorylation in a Heterologous Cell System

  • Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 2004
  • Roundabout (Robo) is the transmembrane receptor for slit, the neuronal guidance molecule. In this study, the tyrosine phosphorylation of Robo was observed in Robo-transfected human embryonic kidney cells and developing rat brains, and found to be increased by the treatment with protein kinase A activator, forskolin. In contrast, protein kinase C activation by phorbol-12-myristate-13-acetate decreased the phosphorylation of Robo. Intracellular calcium was required for the tyrosine phosphorylation. Furthermore, the transfection of an Eph receptor tyrosine kinase dramatically enhanced the tyrosine phosphorylation. These findings indicate that the tyrosine phosphorylation of Robo is regulated by multiple mechanisms, and that Eph receptor kinases may play a role in the regulation of tyrosine phosphorylation of Robo in the rat brain.

Studies on the Interaction of Glut4 and Cytoskeletal Protein (Glut4와 Cytoskeletal Protein의 상호작용에 관한 연구)

  • 김미영;이경림
    • Biomolecules & Therapeutics
    • /
    • v.4 no.4
    • /
    • pp.398-401
    • /
    • 1996
  • The glucose transporters found in the plasma membrane of all animal cells are known to have 12 putative transmembrane domains. Among 7 cytoplasmic loops, the fourth loop is the largest one. Since previous studies showed that cofilin, an actin-modulating protein, was found to interact with the largest cytoplasmic loop of (Na, K)ATPase, we tested if cofilin interacts with the largest cytoplasmic loop of Glut4. We demonstrated by the two-hybrid system that the largest cytoplasmic loop of Glut4 did not show any interaction with cofilin, suggesting that cofilin is not required for the membrane targeting process of other membrane proteins but only for a P-type ATPase.

  • PDF

Ubiquitin Fusion System for Recombinant Peptide Expression and Purification: Application to the Cytoplasmic Domain of Syndecan-4

  • Chae, Young-Kee;Lee, Ha-Yan;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1549-1552
    • /
    • 2007
  • The cytoplasmic domain of syndecan-4, a type I transmembrane heparan sulfate proteoglycan, was overexpressed as a fused form with the ubiquitin molecule in Escherichia coli, and the fusion protein was purified using immobilized metal affinity chromatography (IMAC). The cytoplasmic domain was released from its fusion partner by using yeast ubiquitin hydrolase (YUH), and subsequently purified by reverse phase chromatography. The integrity of the resulting peptide fragment was checked by MALDI-TOF and NMR spectroscopy. The yield of the peptide was 3.0-1.5 mg per liter in LB or minimal medium, respectively. The recombinant expression and purification of this domain will enable us its structural and functional studies using multidimensional NMR spectroscopy.

Structural Analysis of the Ectodomain of HIV Gp41 and Implication on the Gp41 Assisted Membrane Fusion

  • Ryu, Jae-Ryen;Lee, Jung;Suh, Mu-Jin;Yu, Yeong-Sook;Yu, Yeon-Gyu
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.33-33
    • /
    • 1996
  • An ectodomain of gp41, the transmembrane fusion protein of HIV, without the fusion peptide region was expressed using pET system in E. coli. The expressed protein gp41core, was isolated as inclusion body and was purified by ion-exchange chromatography after solubilized in 6M urea. The purified denatured protein was renaturated and the folded domain of gp41core was identified by the presence of the proteolysis resistence domain and a high content of ${\alpha}$-helical secondary structure. (omitted)

  • PDF

Analysis of Entamoeba histolytica Membrane via LC-MALDI-TOF/TOF

  • Ujang, Jorim Anak;Noordin, Rahmah;Othman, Nurulhasanah
    • Mass Spectrometry Letters
    • /
    • v.10 no.3
    • /
    • pp.84-87
    • /
    • 2019
  • Liquid chromatography mass spectrometry is widely employed in proteomics studies. One of such instruments is the Liquid Chromatography (LC)-Matrix-assisted laser desorption ionisation (MALDI)-Time of flight (TOF) or LC-MALDI-TOF/TOF. In this study, this instrument was used to identify the membrane proteins of a protozoan parasite namely Entamoeba histolytica. It causes amoebiasis in human. The E. histolytica trophozoites were cultured prior to the membrane protein extraction using the conventional method, $ProteoPrep^{(R)}$ and $ProteoExtract^{(R)}$ kits. Then, the membrane protein extracts were trypticdigested and analysed by LC-MALDI-TOF/TOF. Approximately, 194 proteins were identified and 27.8% (54) were predicted as membrane proteins having 1 to 15 transmembrane regions and signal peptides by combining all three extraction methods. Also, this study has discovered 3 unique proteins as compared to our previous study which merit further investigation.

Predicting Transmembrane $\beta$-barrel membrane protein with HMM (HMM을 이용한 단백질 $\beta$-barrel 막횡단 부위 예측)

  • 안창신;유성준;박현석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.802-804
    • /
    • 2003
  • 2000년대 초 인간 지놈 프로젝트의 완성으로 새로운 포스트-지놈 시대를 맞이하여, 유전자에 대한 해독보다는 인간의 모든 대사와 질병에 직접관여 하고 있는 단백질의 구조와 기능에 대해 많은 관심과 연구가 이루어지고 있다. 특히, 특정 단백질들은 암과 같은 불치병에 직접관여 하고 있으므로 이러한 단백질들의 기능과 구조에 대한 예측 성능의 향상은 새로운 신약 개발에 큰 도움이 될 것이다. 본 논문은 기계학습(Machine Learning)의 한 분야인 HMM(Hidden Markov Model)을 이용하여 $\beta$-barrel 형태로 막횡단하는 단백질의 특성과 기능으로부터 막횡단하는 부위가 존재하는지 여부를 예측하는 프로그램을 구현했다.

  • PDF

Characterization of a cDNA Encoding Transmembrane Protein 258 from a Two-spotted Cricket Gryllus bimaculatus (쌍별귀뚜라미(Gryllus bimaculatus)의 GbTmem258 cDNA 클로닝과 발현분석)

  • Kisang Kwon;Honggeun Kim;Hyewon Park;O-Yu Kwon
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.828-834
    • /
    • 2023
  • The cDNA that encodes transmembrane protein 258 (Tmem258) was cloned from Gryllus bimaculatus and named GbTmem258. This protein comprises 80 amino acids, has no N-glycosylation site, and contains five potential phosphorylation sites at two serines, two threonines, and one tyrosine. The predicted molecular mass of GbTmem258 is 9.06 kDa, and its theoretical isoelectric point is 5.5. The tertiary structure of GbTmem258 was predicted using the available secondary structure information, which suggests the presence of alpha helices (52.5%), random coils (22.5%), extended strands (16.25%), and beta turns (8.75%). Homology analysis revealed that GbTmem258 exhibits high similarity at the amino-acid level to Tmem258 found in other species. The effect of starvation and refeeding on GbTmem258 mRNA expression was also examined in this study. It was found that GbTmem258 mRNA expression in the hindgut progressively increased throughout the starvation period, peaking at almost 1.5 times the control level after six days of starvation. However, refeeding for one to two days after the six-day starvation period restored GbTmem258 mRNA expression to the control level. In fat body, GbTmem258 mRNA expression was almost 3-fold higher during starvation compared to the control level. Refeeding for one to two days after the six-day fast resulted in a decline in the expression to about a 2.5-fold increase over the control level. Throughout the starving and refeeding periods, no other tissues showed any discernible alterations in GbTmem258 mRNA expression.

Hepatic Steatosis Alleviated in Diabetic Mice upon Dietary Exposure to Fibroin via Transgenic Rice: Potential STAMP2 Involvement in Hepatocytes

  • Park, Ji-Eun;Jeong, Yeon Jae;Kim, Hye Young;Yoo, Young Hyun;Lee, Kwang Sik;Yang, Won Tae;Kim, Doh Hoon;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.24 no.3
    • /
    • pp.231-239
    • /
    • 2020
  • Many benefits of silk protein fibroin (SPF) have been suggested in biomedical applications; and notably, significant SPF effects have been observed for metabolic syndromes that are directly linked to insulin resistance, such as type 2 diabetes mellitus (T2DM). Based on our previous findings, we believe that SPF from spiders exhibits outstanding glucose-lowering effects in diabetic BKS.Cg-m+/+Leprdb mice. In order to evaluate the dietary effects of SPF in diabetic animals, we generated several lines of transgenic rice (TR) that expresses SPF, and the feeding of TR-SPF to diabetic animals decreased blood glucose levels, but did not change insulin levels. Western blot analyses of hepatic proteins showed that AMP-activated protein kinase (AMPK) expression and phosphorylation both decreased in TR-SPF-fed groups, compared with controls. This finding suggests that the glucose-lowering effects in this diabetic animal model might be AMPK-independent. In contrast, six-transmembrane protein of prostate 2 (STAMP2) was upregulated after TR-SPF exposure. Together with STAMP2, the Akt protein phosphorylation increased after TR-SPF exposure, which indicates that STAMP2 leads to Akt phosphorylation and thus increases insulin sensitivity in hepatocytes. Importantly, the hepatic steatosis that was seen in the liver of diabetic mice was remarkably alleviated in TR-SPF-fed mice. Hepatocytes that were immunopositive for STAMP2 were overwhelmingly observed in hepatic tissues from TR-SPF-fed mice compared to the control. Taken together, these results suggest that feeding diabetic mice with TR-SPF upregulates STAMP2 expression and increases Akt phosphorylation in hepatic tissues and thus potentially alleviates insulin resistance and hepatic steatosis.