• 제목/요약/키워드: transmembrane protein

검색결과 287건 처리시간 0.036초

Induction of Intrinsic and Extrinsic Apoptosis Pathways in the Human Leukemic MOLT-4 Cell Line by Terpinen-4-ol

  • Khaw-On, Patompong;Banjerdpongchai, Ratana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3073-3076
    • /
    • 2012
  • Terpinen-4-ol is a terpene found in the rhizome of Plai (Zingiber montanum (Koenig) Link ex Dietr.). In this study apoptogenic activity and mechanisms of cell death induced by terpinen-4-ol were investigated in the human leukemic MOLT-4 cell line. Terpinen-4-ol exhibited cytotoxicity in MOLT-4 cells, with characteristic morphological features of apoptosis by Wright's staining. The mode of cell death was confirmed to be apoptosis by flow cytometric analysis after staining with annexin V-FITC and propidium iodide. A sub-G1 peak in DNA histograms of cell cycle assays was observed. Terpinen-4-ol induced-MOLT-4 cell apoptosis mediated through an intrinsic pathway involving the loss of mitochondrial transmembrane potential (MTP) and release of cytochrome c into the cytosol. In addition, terpinen-4-ol also induced apoptosis via an extrinsic pathway by caspase-8 activation resulting in the cleavage of cytosolic Bid. Truncated-Bid (tBid) translocated to mitochondria and activated the mitochondrial pathway in conjunction with down-regulation of Bcl-2 protein expression. Caspase-3 activity also increased. In conclusion, terpinen-4-ol can induce human leukemic MOLT-4 cell apoptosis via both intrinsic and extrinsic pathways.

Significance of Caveolin-1 Regulators in Pancreatic Cancer

  • Chen, Tao;Liu, Liang;Xu, Hua-Xiang;Wang, Wen-Quan;Wu, Chun-Tao;Yao, Wan-Tong;Yu, Xian-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4501-4507
    • /
    • 2013
  • Caveolin-1 is a scaffold protein on the cell membrane. As the main component of caveolae, caveolin-1 is involved in many biological processes that include substance uptake and transmembrane signaling. Many of these processes and thus caveolin-1 contribute to cell transformation, tumorigenesis, and metastasis. Of particular interest are the dual rolesof tumor suppressor and oncogene that caveolin-1 appear to play in different malignancies, including pancreatic cancer. Therefore, analyzing caveolin-1 regulators and understanding their mechanisms of actionis key to identifying novel diagnostic and therapeutic tools for pancreatic cancer. This review details the mechanisms of action of caveolin-1 regulators and the potential significance for pancreatic cancer treatment.

Expression and Secretion of Foreign Proteins in Yeast Using the ADH1 Promoter and 97 K Killer Toxin Signal Sequence

  • Hong, Seok-Jong;Kang, Hyen-Sam
    • BMB Reports
    • /
    • 제31권2호
    • /
    • pp.123-129
    • /
    • 1998
  • Foreign proteins, $endo-{\beta}-1,4-glucanase$ of Bacillus subtilis, preS1+S2 region of hepatitis B virus large surface antigen, human ${\beta}_2-adrenergic$ receptor ($h{\beta}_{2}AR$), and bovine growth hormone (bGH) were expressed in Saccharomyces cerevisiae and secreted into the medium. These proteins were expressed using the alcohol dehydrogenase I (ADH1) promoter of Saccharomyces cerevisiae and secreted by signal sequence of the 97 K killer toxin gene of doublestranded linear DNA plasmid (pGKL1) of S. cerevisiae. All these proteins underwent severe modifications; in particular, N-glycosylation in the case of $endo-{\beta}-1,4-glucanase$, $h{\beta}_2AR$, and preS1+S2. Seventy four percent of the expressed $endo-{\beta}-1,4-glucanase$ was secreted into the culture medium. Highly modified proteins were detected in the culture medium and in the cell. Expressed $h{\beta}_2AR$, which has seven transmembrane domains, remained in the cell. The degrees of secretion and modification and the states of proteins in the culture medium and in the cell were quite different. These results indicated that the nature of the protein has a critical role in its secretion and modifications.

  • PDF

소청룡탕이 파골세포 분화억제와 골흡수에 미치는 영향 (Effect of Sochungryong-tang Extract on Osteoclast Differentiation and Bone-pit Formation)

  • 안민윤;임형호
    • 대한한의학회지
    • /
    • 제38권3호
    • /
    • pp.59-72
    • /
    • 2017
  • Objectives: This study was performed to evaluate effects of Sochungryong-tang Extract(SRE) on osteoclast differentiation and bone resorptionin order to find out the possibility for clinical use in preventing and treating osteoporosis. Methods: To evaluate the effect of SRE on osteoclast differentiation, we induced RAW 264. 7 cells to be differentiated to osteoclasts by RANKL (receptor activator of nuclear $factor-{\kappa}B$ ligand). We measured effect on TRAP (Tartrate-resistant acid phosphatase), NFATc, cathepsin K, MMP-9, inflammation related factors, histogenesis factors and bone resorption. Results: SRE decreased osteoclast differentiation, and also decreased expression of bone resorbing factors such as MMP-9, cathepsin K, TRAP, NFATc1, MITF, c-Fos, osteoclast stimulatory transmembrane protein, calcitonin receptor in RANKL-induced osteoclast. SRE also decreased Cyclooxygenase-2, indusible nitric oxide synthase, $TNF-{\alpha}$, which are thought to be related with the inflammatory bone destruction. Conclusion: SRE inhibits osteoclast differentiation and bone resorption. The results indicate that the BHT extract can potentially be applied for preventing and treating osteoporosis.

Purification and Characterization of the Functional Catalytic Domain of PKR-Like Endoplasmic Reticulum Kinase Expressed in Escherichia coli

  • Yun Jin-A;Chung Ho-Young;Kim Seong-Jun;Cho Hyun-Soo;Oh Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1453-1458
    • /
    • 2006
  • PKR-like endoplasmic reticulum (ER) kinase (PERK) is a type I transmembrane ER-resident protein containing a cytoplasmic catalytic domain with a Ser/Thr kinase activity, which is most closely related to the eukaryotic translation initiation factor-$2{\alpha}$ ($eIF2{\alpha}$) kinase PKR involved in the antiviral defense pathway by interferon. We cloned and expressed the PERK C-terminal kinase domain (cPERK) in Escherichia coli. Like PERK activation in cells under ER stress, wild-type cPERK underwent autophosphorylation when overexpressed in E. coli, whereas the cPERK(K621M) with a methionine substitution for the lysine at amino acid 621 lost the autophosphorylation activity. The activated form cPERK which was purified to near homogeneity, formed an oligomer and was able to trans-phosphorylate specifically its cellular substrate $eIF2{\alpha}$. Two-dimensional phosphoamino acids analysis revealed that phosphorylation of cPERK occurs at the Ser and Thr residues. The functionally active recombinant cPERK, and its inactive mutant should be useful for the analysis of biochemical functions of PERK and for the determination of their three-dimensional structures.

Structure of CT26 in the C-terminal of Amyloid Precursor Protein Studied by NMR Spectroscopy

  • Kang, Dong-Il;Baek, Dong-Ha;Shin, Song-Yub;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1225-1228
    • /
    • 2005
  • C-terminal fragments of APP (APP-CTs), that contain A$\beta$ sequence, are found in neurotic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. CT26, Thr639-Asp664 (TVIVITLVMLKKKQYTSIHH GVVEVD) includes not only the transmembrane domain but also the cytoplasmic domain of APP. This sequence is produced from cleavage of APP by caspase and $\gamma$-secretase. In this study, the solution structure of CT26 was investigated using NMR spectroscopy and circular dichroism (CD) spectropolarimeter in various membrane-mimicking environments. According to CD spectra and the tertiary structure of CT26 determined in TFE-containing aqueous solution, CT26 has an α-helical structure from $Val^{2}\;to\;Lys^{11}$ in TFE-containing aqueous solution. However, according to CD data, CT26 adopts a $\beta$-sheet structure in the SDS micelles and DPC micelles. This result implies that CT26 may have a conformational transition between $\alpha$-helix and $\beta$-sheet structure. This study may provide an insight into the conformational basis of the pathological activity of the C-terminal fragments of APP in the model membrane.

Endothelin-1 enhances the melanogenesis via MITF-GPNMB pathway

  • Zhang, Ping;Liu, Wei;Yuan, Xiaoying;Li, Dongguang;Gu, Weijie;Gao, Tianwen
    • BMB Reports
    • /
    • 제46권7호
    • /
    • pp.364-369
    • /
    • 2013
  • Endothelin-1 (ET-1) plays an indispensable role in epidermal pigmentation in hyperpigmentary disorders due to a central role in melanogenesis. Nevertheless, precise mechanism involved in ET-1-induced hyperpigmentation is still undefined. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB) is a key element in melanosome formation. Therefore, we speculated that GPNMB was correlated with ET-1-induced pigmentation. After culturing with ET-1, melanin synthesis was significantly up-regulated, accompanying with increased expression of GPNMB and microphthalmia-associated transcription factor (MITF). Total number of melanosomes and melanin synthesis were sharply reduced via GPNMB-siRNA transfection, indicating ET-1-induced pigmentation by GPNMB-dependent manner. Furthermore, MITF-siRNA transfection strikingly inhibited GPNMB expression and the melanogenesis, and this suppression failed to be alleviated by ET-1 stimulation. All of these results demonstrated that ET-1 can trigger melanogenesis via the MITF-regulated GPNMB pathway. Taken together, these findings will provide a new explanation of how ET-1 induces hyperpigmentation, and possibly supply a new strategy for cosmetic studies.

Separation and flux characteristics in cross-flow ultrafiltration of bovine serum albumin and bovine hemoglobin solutions

  • Hsiao, Ruey-Chang;Hung, Chia-Lin;Lin, Su-Hsia;Juang, Ruey-Shin
    • Membrane and Water Treatment
    • /
    • 제2권2호
    • /
    • pp.91-103
    • /
    • 2011
  • The flux behavior in the separation of equimolar bovine serum albumin (BSA) and bovine hemoglobin (HB) in aqueous solutions by cross-flow ultrafiltration (UF) was investigated, in which polyacylonitrile membrane with a molecular weight cut-off (MWCO) of 100 kDa was used. BSA and HB have comparable molar mass (67,000 vs. 68,000) but different isoelectric points (4.7 vs. 7.1). The effects of process variables including solution pH (6.5, 7.1, and 7.5), total protein concentration (1.48 and 7.40 ${\mu}M$), transmembrane pressure (69, 207, and 345 kPa), and solution ionic strength (with or without 0.01 M NaCl) on the separation were examined. It was shown that the ionic strength had a negligible effect on separation performance under the conditions studied. Although BSA and HB are not rigid bodies, the flux decline in the present cross-flow UF did not result from the mechanism of cake filtration with compression. In this regard, the specific cake resistance when pseudo steady-state was reached was evaluated and discussed.

A Revised Assay for Monitoring Autophagic Flux in Arabidopsis thaliana Reveals Involvement of AUTOPHAGY-RELATED9 in Autophagy

  • Shin, Kwang Deok;Lee, Han Nim;Chung, Taijoon
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.399-405
    • /
    • 2014
  • Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using proUBQ10-GFP-ATG8a as an autophagic marker, we showed that autophagic flux is reduced but not completely compromised in Arabidopsis thaliana atg9 mutants. In contrast, we confirmed full inhibition of auto-phagic flux in atg7 and that the difference in autophagy was consistent with the differences in mutant phenotypes such as hypersensitivity to nutrient stress and selective autophagy. Autophagic flux is also reduced by an inhibitor of phosphatidylinositol kinase. Our data indicated that atg9 is phenotypically distinct from atg7 and atg2 in Arabidopsis, and we proposed that ATG9 and phosphatidylinositol kinase activity contribute to efficient autophagy in Arabidopsis.

Genomic Organization of Penicillium chrysogenum chs4, a Class III Chitin Synthase Gene

  • Park, Yoon-Dong;Lee, Myung-Sook;Kim, Ji-Hoon;Jun Namgung;Park, Bum-Chan;Bae, Kyung-Sook;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • 제38권4호
    • /
    • pp.230-238
    • /
    • 2000
  • Class III chitin synthases in filamentous fungi are important for hyphal growth and differentiation of several filamentous fungi. A genomic clone containing the full gene encoding Chs4, a class III chitin synthase in Penicillium chrysogenum, was cloned by PCR screening and colony hybridization from the genomic library. Nucleotide sequence analysis and transcript mapping of chs4 revealed an open reading frame (ORF) that consisted of 5 exons and 4 introns and encoded a putative protein of 915 amino acids. Nucleotide sequence analysis of the 5'flanking region of the ORF revealed a potential TATA box and several binding sites for transcription activators. The putative transcription initiation site at -716 position was identified by primer extension and the expression of the chs4 during the vegetative growth was confirmed by Northern blot analysis. Amino acid sequence analysis of the Chs4 revealed at least 5 transmembrane helices and several sites for past-transnational modifications. Comparison of the amino acid sequence of Chs4 with those of other fungi showed a close relationship between P chrysogenum and genus Aspergillus.

  • PDF