• Title/Summary/Keyword: transmembrane protein

Search Result 287, Processing Time 0.038 seconds

A Role of YlBud8 in the Regulation of Cell Separation in the Yeast Yarrowia lipolytica

  • Li, Yun-Qing;Xue, Qing-Jie;Yang, Yuan-Yuan;Wang, Hui;Li, Xiu-Zhen
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.141-150
    • /
    • 2019
  • The spatial landmark protein Bud8 plays a crucial role in bipolar budding in the budding yeast Saccharomyces cerevisiae. The unconventional yeast Yarrowia lipolytica can also bud in a bipolar pattern, but is evolutionarily distant from S. cerevisiae. It encodes the protein YALI0F12738p, which shares the highest amino acid sequence homology with S. cerevisiae Bud8, sharing a conserved transmembrane domain at the C-terminus. Therefore, we named it YlBud8. Deletion of YlBud8 in Y. lipolytica causes cellular separation defects, resulting in budded cells remaining linked with one another as cell chains or multiple buds from a single cell, which suggests that YlBud8 may play an important role in cell separation, which is distinct from the function of Bud8 in S. cerevisiae. We also show that the YlBud8-GFP fusion protein is located at the cell membrane and enriched in the bud cortex, which would be consistent with a role in the regulation of cell separation. The coiled-coil domain at the N-terminus of YlBud8 is important to the correct localization and function of YlBud8, as truncated proteins that do not contain the coiled-coil domain cannot rescue the defects observed in $Ylbud8{\Delta}$. This finding suggests that a new signaling pathway controlled by YlBud8 via regulation of cell separation may exist in Y. lipolytica.

The spatio-temporal expression analysis of parathyroid hormone like hormone gene provides a new insight for bone growth of the antler tip tissue in sika deer

  • Haihua Xing;Ruobing Han;Qianghui Wang;Zihui Sun;Heping Li
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1367-1376
    • /
    • 2024
  • Objective: Parathyroid hormone like hormone (PTHLH), as an essential factor for bone growth, is involved in a variety of physiological processes. The aim of this study was to explore the role of PTHLH gene in the growth of antlers. Methods: The coding sequence (CDS) of PTHLH gene cDNA was obtained by cloning in sika deer (Cervus nippon), and the bioinformatics was analyzed. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the differences expression of PTHLH mRNA in different tissues of the antler tip at different growth periods (early period, EP; middle period, MP; late period, LP). Results: The CDS of PTHLH gene was 534 bp in length and encoded 177 amino acids. Predictive analysis results revealed that the PTHLH protein was a hydrophilic protein without transmembrane structure, with its secondary structure consisting mainly of random coil. The PTHLH protein of sika deer had the identity of 98.31%, 96.82%, 96.05%, and 94.92% with Cervus canadensis, Bos mutus, Oryx dammah and Budorcas taxicolor, which were highly conserved among the artiodactyls. The qRT-PCR results showed that PTHLH mRNA had a unique spatio-temporal expression pattern in antlers. In the dermis, precartilage, and cartilage tissues, the expression of PTHLH mRNA was extremely significantly higher in MP than in EP, LP (p<0.01). In the mesenchyme tissue, the expression of PTHLH mRNA in MP was significantly higher than that of EP (p<0.05), but extremely significantly lower than that of LP (p<0.01). The expression of PTHLH mRNA in antler tip tissues at all growth periods had approximately the same trend, that is, from distal to basal, it was first downregulated from the dermis to the mesenchyme and then continuously up-regulated to the cartilage tissue. Conclusion: PTHLH gene may promote the rapid growth of antler mainly through its extensive regulatory effect on the antler tip tissue.

The Role and Regulation of MCL-1 Proteins in Apoptosis Pathway

  • Bae, Jeehyeon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.113-113
    • /
    • 2002
  • Phylogenetically conserved Bcl-2 family proteins play a pivotal role in the regulation of apoptosis from virus to human. Members of the Bcl-2 family consist of antiapoptotic proteins such as Bcl-2, Bcl-xL, and Bcl-w, and proapoptotic proteins such as BAD, Bax, BOD, and Bok. It has been proposed that anti- and proapoptotic Bcl-2 proteins regulate cell death by binding to each other and forming heterodimers. A delicate balance between anti- and proapoptotic Bcl-2 family members exists in each cell and the relative concentration of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Mcl-1 (Myeloid cell :leukemia-1) is a member of the Bcl-2 family proteins and was originally cloned as a differentiation-induced early gene that was activated in the human myeloblastic leukemia cell line, ML-1 . Mcl-1 is expressed in a wide variety of tissues and cells including neoplastic ones. We recently identified a short splicing variant of Mcl-1 short (Mcl-IS) and designated the known Mcl-1 as Mcl-1 long (Mcl-lL). Mcl-lL protein exhibits antiapoptotic activity and possesses the BH (Bcl-2 homology) 1, BH2, BH3, and transmembrane (TM) domains found in related Bcl-2 proteins. In contrast, Mcl-1 S is a BH3 domain-only proapoptotic protein that heterodimerizes with Mcl-lL. Although both Mc1-lL and Mcl-lS proteins contain BH domains fecund in other Bcl-2 family proteins, they are distinguished by their unusually long N-terminal sequences containing PEST (proline, glutamic acid, serine, and threonine) motifs, four pairs of arginine residues, and alanine- and glycine-rich regions. In addition, the expression pattern of Mcl-1 protein is different from that of Bcl-2 suggesting a unique role (or Mcl-1 in apoptosis regulation. Tankyrasel (TRF1-interacting, ankyrin-related ADP-related polymerasel) was originally isolated based on its binding to TRF 1 (telomeric repeat binding factor-1) and contains the sterile alpha motif (SAM) module, 24 ankyrin (ANK) repeats, and the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP). Previous studies showed that tankyrasel promotes telomere elongation in human cells presumably by inhibiting TRFI though its poly(ADP-ribosyl)action by tankyrasel . In addition, tankyrasel poly(ADP-ribosyl)ates Insulin-responsive amino peptidase (IRAP), a resident protein of GLUT4 vesicles, and insulin stimulates the PARP activity of tankyrase1 through its phosphorylation by mitogen-activated protein kinase (MAPK). ADP-ribosylation is a posttranslational modification that usually results in a loss of protein activity presumably by enhancing protein turnover. However, little information is available regarding the physiological function(s) of tankyrase1 other than as a PARP enzyme. In the present study, we found tankyrasel as a specific-binding protein of Mcl-1 Overexpression of tankyrasel led to the inhibition of both the apoptotic activity of Mel-lS and the survival action of Mcl-lL in mammalian cells. Unlike other known tankyrasel-interacting proteins, tankyrasel did not poly(ADP-ribosyl)ate either of the Mcl-1 proteins despite its ability to decrease Mcl-1 proteins expression following coexpression. Therefore, this study provides a novel mechanism to regulate Mcl-1-modulated apoptosis in which tankyrasel downregulates the expression of Mcl-1 proteins without the involvement of its ADP-ribosylation activity.

  • PDF

Dietary Exposure to Transgenic Rice Expressing the Spider Silk Protein Fibroin Reduces Blood Glucose Levels in Diabetic Mice: The Potential Role of Insulin Receptor Substrate-1 Phosphorylation in Adipocytes

  • Park, Ji-Eun;Jeong, Yeon Jae;Park, Joon Beom;Kim, Hye Young;Yoo, Young Hyun;Lee, Kwang Sik;Yang, Won Tae;Kim, Doh Hoon;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2019
  • Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance (IR). T2DM is correlated with obesity and most T2DM medications have been developed for enhancing insulin sensitivity. Silk protein fibroin (SPF) from spiders has been suggested as an attractive biomaterial for medical purposes. We generated transgenic rice (TR) expressing SPF and fed it to diabetic $BKS.Cg-m+/+Lepr^{db}$ mice to monitor the changes in blood glucose levels and adipose tissue proteins associated with energy metabolism and insulin signaling. In the present study, the adipocyte size in abdominal fat in TR-SPF-fed mice was remarkably smaller than that of the control. Whereas the adenosine monophosphate-activated protein kinase (AMPK)-activated protein kinase and insulin receptor substrate 1 (IRS1) protein levels were increased in abdominal adipose tissues after TR-SPF feeding, levels of six-transmembrane protein of prostate 2 (STAMP2) proteins decreased. Phosphorylation of AMPK at threonine 172 and IRS1 at serine 307 and tyrosine 632 were both increased in adipose tissues from TR-SPF-fed mice. Increased expression and phosphorylation of IRS1 at both serine 307 and tyrosine 632 in adipose tissues indicated that adipocytes obtained from abdominal fat in TR-SPF-fed mice were more susceptible to insulin signaling than that of the control. STAMP2 protein levels decreased in adipose tissues from TR-SPF-fed mice, indicating that STAMP2 proteins were reducing adipocytes that were undergoing lipolysis. Taken together, this study showed that TR-SPF was effective in reducing blood glucose levels in diabetic mice and that concurrent lipolysis in abdominal adipocytes was associated with alterations of AMPK, IRS1, and STAMP2. Increased IRS1 expression and its phosphorylation by TR-SFP were considered to be particularly important in the induction of lipolysis in adipocytes, as well as in reducing blood glucose levels in this animal model.

Sequencing analysis of the OFC1 gene on the nonsyndromic cleft lip and palate patient in Korean (한국인 비증후군성 구순구개열 환자의 OFC1 유전자의 서열 분석)

  • Kim, Sung-Sik;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.185-197
    • /
    • 2003
  • This study was performed to identify the characteristics of the OFC1 gene (locus: chromosome 6p24.3) in Korean patients, which is assumed to be the major gene behind the nonsyndromic cleft lip and palate. The sample consisted of 80 subjects: 40 nonsyndromic cleft lip and palate patients (proband, 20 males and females, mean age 14.2 years); and 40 normal adults (20 males and 20 females, mean age 25.6 years). Using PCR-based assay, the OFC1 gene was amplified, sequenced, and then searched for similar protein structures. Results were as follows: 1. The OFC1 gene contains the microsatellite marker 'CA' repeats. The number of the reference 'CA' repeats was 21 times, and formed as TA(CA)11TA(CA)10. But, in Koreans, the number of tandem 'CA' repeats was varied from 17 to 26 except 18, and 'CA' repeats consisted of TA(CA)n. 2. Nine allelic variants were found. Distribution of the OFC1 allele was similar between the patients and control group. 3. There was a replacement of the base 'T' to 'C' after 11 tandem 'CA' repeats in Koreans compared with Weissenbach's report. However, the difference did not seem to be the ORF prediction results between Koreans and Weissenbach's report. 4. The BLAST search results showed the Telomerase reverse transcriptase (TERT) and the Nucleotide binding protein 2 (NBP2) as similar proteins. The TERT was a protein product by the hTERT gene in the locus 5p15.33 (NCBI Genome Annotation; NT023089) The NBP2 was a protein product by the ABCC3 (ATP-binding cassette, sub-family C) gene in the locus 17q22 (NCBI Genome Annotation; NT010783). 5. In the Pedant-Pro database analysis, the predictable protein structure of the OFC1 gene had at least one transmembrane region and one non-globular region.

Homo- or Hetero-Dimerization of Muscarinic Receptor Subtypes is Not Mediated by Direct Protein-Protein Interaction Through Intracellular and Extracellular Regions

  • Kang, Yun-Kyung;Yoon, Tae-Sook;Lee, Kyung-Lim;Kim, Hwa-Jung
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.846-854
    • /
    • 2003
  • The oligomerization of G-proteincoupled receptors (GPCRs) has been shown to occur by various mechanisms, such as via disulfide covalent linkages, non covalent (ionic, hydrophobic) interactions of the N-terminal, and/or transmembrane and/or intracellular domains. Interactions between GPCRs could involve an association between identical proteins (homomers) or non-identical proteins (heteromers), or between two monomers (to form dimers) or multiple monomers (to form oligomers). It is believed that muscarinic receptors may also be arranged into dimeric or oigomeric complexes, but no systematic experimental evidence exists concerning the direct physical interaction between receptor proteins as its mechanism. We undertook this study to determine whether muscarinic receptors form homomers or a heteromers by direct protein-protein interaction within the same or within different subtypes using a yeast two-hybrid system. Intracellular loops (i1, i2 and i3) and the C-terminal cytoplasmic tails (C) of human muscarinic (Hm) receptor subtypes, Hm1, Hm2 and Hm3, were cloned into the vectors (pB42AD and pLexA) of a two-hybrid system and examined for heteromeric or homodimeric interactions between the cytoplasmic domains. No physical interaction was observed between the intracellular domains of any of the Hm/Hm receptor sets tested. The results of our study suggest that the Hm1, Hm2 and Hm3 receptors do not form dimers or oligomers by interacting directly through either the hydrophilic intracellular domains or the C-terminal tail domains. To further investigate extracellular domain interactions, the N-terminus (N) and extracellular loops (o1 and o2) were also cloned into the two-hybrid vectors. Interactions of Hm2N with Hm2N, Hm2o1, Hm2o2, Hm3N, Hm3o1 or Hm3o2 were examined. The N-terminal domain of Hm2 was found to have no direct interaction with any extracellular domain. From our results, we excluded the possibility of a direct interaction between the muscarinic receptor subtypes (Hm1, Hm2 and Hm3) as a mechanism for homo- or hetero-meric dimerization/oligomerization. On the other hand, it remains a possibility that interaction may occur indirectly or require proper conformation or subunit formation or hydrophobic region involvement.

Fouling Study with Binary Protein Mixtures in Microfilration (이성분계 단백질 혼합물의 미세막 분리공정에서 막오염에 관한 연구)

  • Ahn, Byung Hun;Moon, Dong Ju;Yoo, Kye Sang;Ho, Chia Chi
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • Membrane fouling by protein mixtures during microfiltration has been investigated for binary mixtures of bovine serum albumin (BSA), casein, lysozyme, pepsin, and ovalbumin. Filtration experiments were carried out using $0.2{\mu}m$ polycarbonate track-etched (PCTE) membrane in a stirred cell under constant transmembrane pressure (14 kPa) and concentration of hydrogen ion (pH=11) to study the effect of mixture composition on filtrate flux decline. Flux decline data were analyzed using a pore blockage-cake formation model developed recently. It was found that the model is in a good agreement with the experimental data. Fouling parameters such as the rate of pore blockage(${\alpha}$), the initial resistance of the protein deposit ($R_{po}$) and the increasing rate of the protein layer resistance(${\beta}$) were used to evaluate the rate of filtrate flow by membrane fouling in the binary mixture system. Generally, the trend of ${\alpha}$ is comparable with that of filtrate flux decline. It was also found that fast flux decreasing was observed over the binary mixture containing casein. The result is due to high value of the initial resistance of the protein deposit ($R_{po}$) over casein.

Chromophore formation and phosphorylation analysis of constitutively active rhodopsin mutants (Chromophore 형성과 rhodopsin kinase 활성을 이용한 항활성 로돕신 mutant의 분석)

  • Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.783-790
    • /
    • 2007
  • G protein coupled receptors (GPCRs) transmit various extracellular signals into the cells. Upon binding of the ligands, conformational changes in the extracellular and/or transmembrane (TM) domains of CPCRs were propagated into the cytoplasmic (CP) domain of the molecule leading to the activation of their cognate heterotrimeric C proteins and kinases. Constitutively active GPCR mutants causing the activation of C Protein signaling even in the absence of ligand binding are of interest for the study of activation mechanism of GPCRs. Two classes of constitutively active mutations, categorized by their effects on the salt bridge between Ell3 and K296, were found in the TM domain of rhodopsin. Opsin mutants containing combinations of the mutations were constructed to study the conformational changes required for the activation of rhodopsin. Rhodopsin chromophore regenerated with 11-cis-retinal showed a thermal stability inversely correlated with its constitutive activity. In contrast, rhodopsin mutants exhibited a binding affinity to an agonist, all-trans-retinal, in a constitutive activity-dependent manner. In order to test whether the conformational changes responsible for the activation of trans-ducin (Gt) are the same as the conformation required for the recognition of rhodopsin kinase, analysis of the mutants were carried out with phosphorylation by rhodopsin kinase. Rhodopsin mutants containing combinations of different classes of the mutations showed a strong synergistic effect on the phosphorylation of the mutants in the dark as similar to that of Gt activation. The results suggest that at least two or three kinds of segmental and independent conformational changes are required for the activation of rhodopsin and the conformational changes responsible for activating rhodopsin kinase and Gt are similar to each other.

Transcriptomic Profile in Pear Leave with Resistance Against Venturia nashicola Infection (배 검은별무늬병 감염과 저항성 방어반응 연관 전사체 프로파일)

  • Il Sheob Shin;Jaean Chun;Sehee Kim;Kanghee Cho;Kyungho Won;Haewon Jung;Keumsun Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.36-36
    • /
    • 2022
  • The molecular understanding of resistance and susceptibility of host plants to scab, a most threatful disease to pome fruit production worldwide, is very limited. Comparing resistant line '93-3-98' to susceptible one 'Sweet Skin' at seven time points of 0, 0.5, 1, 2, 3, 4, 8 days post inoculation, RNA-sequencing data derived from infected and mock-inoculated young leaves were analyzed to evaluate the tolerant response and to mine candidate genes of pear to the scab pathogen Venturia nashicola. Analysis of the mapped reads showed that the infection of V. nashicola led to significant differential expression of 17,827 transcripts with more than 3-fold change in the seven pairs of libraries, of which 9,672 (54%) are up- and 8,155(46%) are down-regulated. These included mainly receptor (NB-ARC domains-containing, CC-NBS-LRR, TIR-NBS-LRR, seven transmembrane MLO family protein) and transcription factor (ethylene responsive element binding, WRKY DNA-binding protein) related gene. An arsenal of defense response of highly resistant pear accessions derived from European pear was probably supposed no sooner had V. nashicola infected its host than host genes related to disease suppression like Polyketide cyclase/dehydrase and lipid transport protein, WRKY family transcription factor, lectin protein kinase, cystein-rich RLK, calcium-dependent phospholipid-binding copine protein were greatly boosted and eradicated cascade reaction induced by pathogen within 24 hours. To identify transcripts specifically expressed in response to V. nashicola, RT-PCRs were conducted and compare to the expression patterns of seven cultivars with a range of highly resistant to highly susceptible symptom. A DEG belonging to the PR protein family genes that were higher expressed in response to V. nashicola suggesting extraordinary role in the resistance response were led to the identification. This study provides the first transcriptional profile by RNA-seq of the host plant during scab disease and insights into the response of tolerant pear plants to V. nashicola.

  • PDF

Steap4 Stimulates Adipocyte Differentiation through Activation of Mitotic Clonal Expansion and Regulation of Early Adipogenic Factors (Steap4에 의한 지방세포분화 촉진 기전)

  • Sim, Hyun A;Shin, Jooyeon;Kim, Ji-Hyun;Jung, Myeong Ho
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1092-1100
    • /
    • 2020
  • The six-transmembrane epithelial antigen of prostate 4 (Steap4) is a metalloreductase that plays a role in intracellular iron and cupper homeostasis, inflammatory response, and glucose and lipid metabolism. Previously, Steap4 has been reported to stimulate adipocyte differentiation; however, the underlying mechanisms of this action remain unexplored. In the present study, we investigated the molecular mechanisms involved in Steap4-induced adipocyte differentiation using 3T3-L1 cells, immortalized brown adipocyte (iBA) cells, and mouse embryonic fibroblast C3H10T1/2 cells. The knockdown of Steap4 using adenovirus-containing shRNA attenuated mitotic clonal expansion (MCE), as evidenced by the impaired proliferation of 3T3-L1 cells, iBA cells, and C3H10T1/2 cells within 48 hr after adding the differentiation medium. Steap4 knockdown downregulated G1/S phase transition-related cell cycle regulators (including cyclin A and cyclin D) and upregulated cell cycle inhibitors (including p21 and p27). Furthermore, Steap4 knockdown inhibited the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and Akt. Moreover, Steap4 knockdown repressed the expression of early adipogenic activators, such as CCAAT-enhancer-binding protein β (C/EBPβ) and Kruppel-like factor family factor 4 (KLF4). On the other hand, Steap4 knockdown stimulated the expression of adipogenic inhibitors, including KLF2, KLF3, and GATA2. The overexpression of Steap4 using an adenovirus removed the repressive histone marks H3K9me2 and H3K9me3 on the promoter of C/EBPβ. These results indicate that Stepa4 stimulates adipocyte differentiation through the induction of MCE and the modulation of early adipogenic transcription factors, including C/EBPβ, during the early phase of adipocyte differentiation.