• Title/Summary/Keyword: transmembrane modulator

Search Result 5, Processing Time 0.023 seconds

Production of Exopolysaccharides by Lactococcus lactis subsp. cremoris MG1363 Expressing the eps Gene Clusters from Two Strains of Lactobacillus rhamnosus

  • Kang, Hye-Ji;LaPointe, Gisele
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.91-101
    • /
    • 2018
  • The aim of this study was to transfer the 18.5 kb gene clusters coding for 17 genes from Lactobacillus rhamnosus to Lactococcus lactis subsp. cremoris MG1363 in order to determine the effect of host on exopolysaccharide (EPS) production and to provide a model for studying the phosphorylation of proteins which are proposed to be involved in EPS polymerization. Lactobacillus rhamnosus RW-9595M and ATCC 9595 have 99% identical operons coding for EPS biosynthesis, produced different amounts of EPS (543 vs 108 mg/l). L. lactis subsp. cremoris MG1363 transformed with the operons from RW-9595M and ATCC 9595 respectively, produced 326 and 302 mg/l EPS in M17 containing 0.5% glucose. The tyrosine protein kinase transmembrane modulator (Wzd) was proposed to participate in regulating chain elongation of EPS polymers by interacting with the tyrosine protein kinase Wze. While Wzd was found in phosphorylated form in the presence of the phosphorylated kinase (Wze), no phosphorylated proteins were detected when all nine tyrosines of Wzd were mutated to phenylalanine. Lactococcus lactis subsp. cremoris could produce higher amounts of EPS than other EPS-producing lactococci when expressing genes from L. rhamnosus. Phosphorylated Wzd was essential for the phosphorylation of Wze when expressed in vivo.

Expression of Taurine Transporter in Cell Lines and Murine Organs (세포주와 마우스 조직에서 타우린수송체의 발현분석)

  • 김하원;안희창;안혜숙;현진원;이은방
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.78-84
    • /
    • 2002
  • Taurine (2-ethaneaminosulfonic acid, $^+{NH}_3{CH_2}{CH_2}{SO_3^{-}}$) is endogenous amino acid with functions as modulator of osmoregulation, antioxidation, detoxification, transmembrane calcium transport, and a free radical scavenger in mammalian tissues. Taurine transporter(TAUT) contains 12 transmembrane helices, which are typical of the $Na^+$- and $Cl^-$-dependent transporter gene family, and has been cloned recently from several species and tissues. To analyze the expression of TAUT mRNA, one step RT-PCR was performed from human and mouse cultured cell lines and from various mouse tissues. The primers were designed to encode highly conserved amino acid sequences at the second transmembrane domain and at the fourth and fifth intracellular domains. RT-PCR analysis showed both of the human intestine HT-29 and mouse macrophage RAW264.7 cell lines expressed mRNA of TAUT. To define the expression patterns of the TAUT mRNA in the murine organs, RT-PCR was performed to detect cDNA representing TAUT mRNA from seven different mouse tissues. The TAUT was detected in all of the mouse tissues analyzed such as heart, lung, thymus, kidney, liver, spleen and brain. A large amount of transcript was fecund from heart, liver, spleen, kidney, and brain, while lung contained a very small amount of transcript.

Intramolecular Disulfide Bonds for Biogenesis of Calcium Homeostasis Modulator 1 Ion Channel Are Dispensable for Voltage-Dependent Activation

  • Kwon, Jae Won;Jeon, Young Keul;Kim, Jinsung;Kim, Sang Jeong;Kim, Sung Joon
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.758-769
    • /
    • 2021
  • Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (ICALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as ICALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect ICALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both ICALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.

Endothelin-l as a Regulator of Vascular Smooth Muscle Contraction-related Signal Transduction and Endothelin-l-induced Pain-related Nociception -The Approach of Basic Physical Therapy for the Study of Pain Specialized Physical Therapy- (혈관평활근 수축-연관 신호전달 체계에 대한 Endothelin-1의 역할과 Endothelin-1-유도통증-연관 유해감각 -통증전문물리치료 연구를 위한 기초물리치료학적 접근을 중심으로-)

  • Kim, Jung-Hwan;Lee, Sook-Hee;Lee, Sang-Bin;Choi, Yoo-Rim;Kim, Bo-Kyung;Park, Ju-Hyun;Koo, Ja-Pung;Choi, Wan-Suk;An, Ho-Jung;Choi, Jeong-Hyun;Kim, Moo-Gi;Kim, Soon-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.99-119
    • /
    • 2006
  • Endothelin (ET) is a 21 amino acid peptide with multifunctional effects on the vasculature as well as a variety of other cell types such as respiratory, gastrointestinal, urogenital, endocrine, central nervous systems, and others. Endothelin has emerged as a modulator by autocrine and paracrine actions for many cellular activities, including vasoconstriction, cell proliferation, hormone production, neurotransmitter and/or neuromodulator. The endothelin family consists of three closely related peptides, ET-1, ET-2, and ET-3 derived from separate genes, such as chromosome 6, 1, and 20, respectively. ET-1 is the predominant isoform produced in the cardiovascular system and about which most is known. Endothelin receptors are seven-transmembrane GTP-binding protein-coupled receptors, which are classified into endothelin-A (ETA) and endothelin-B (ETB) receptors. Interestingly, recent evidence is accumulating to suggest that ET -1 may contribute to a variety of pain states such as allodynia and hyperalgesia in animals and humans. Therefore, in this review the biological characteristics and contraction-related mechanism of endothelin-1 in mammalian cells will be summarized. Especially, we focus on multifunctional roles for ET-1 in noxious stimulation-induced pain for the study of pain specialized physical therapy.

  • PDF

Mammalian Reproduction and Pheromones (포유동물의 생식과 페로몬)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2006
  • Rodents and many other mammals have two chemosensory systems that mediate responses to pheromones, the main and accessory olfactory system, MOS and AOS, respectively. The chemosensory neurons associated with the MOS are located in the main olfactory epithelium, while those associated with the AOS are located in the vomeronasal organ(VNO). Pheromonal odorants access the lumen of the VNO via canals in the roof of the mouth, and are largely thought to be nonvolatile. The main pheromone receptor proteins consist of two superfamilies, V1Rs and V2Rs, that are structurally distinct and unrelated to the olfactory receptors expressed in the main olfactory epithelium. These two type of receptors are seven transmembrane domain G-protein coupled proteins(V1R with $G_{{\alpha}i2}$, V2R with $G_{0\;{\alpha}}$). V2Rs are co-expressed with nonclassical MHC Ib genes(M10 and other 8 M1 family proteins). Other important molecular component of VNO neuron is a TrpC2, a cation channel protein of transient receptor potential(TRP) family and thought to have a crucial role in signal transduction. There are four types of pheromones in mammalian chemical communication - primers, signalers, modulators and releasers. Responses to these chemosignals can vary substantially within and between individuals. This variability can stem from the modulating effects of steroid hormones and/or non-steroid factors such as neurotransmitters on olfactory processing. Such modulation frequently augments or facilitates the effects that prevailing social and environmental conditions have on the reproductive axis. The best example is the pregnancy block effect(Bruce effect), caused by testosterone-dependent major urinary proteins(MUPs) in male mouse urine. Intriguingly, mouse GnRH neurons receive pheromone signals from both odor and pheromone relays in the brain and may also receive common odor signals. Though it is quite controversial, recent studies reveal a complex interplay between reproduction and other functions in which GnRH neurons appear to integrate information from multiple sources and modulate a variety of brain functions.

  • PDF