Browse > Article
http://dx.doi.org/10.4014/mbl.1803.03008

Production of Exopolysaccharides by Lactococcus lactis subsp. cremoris MG1363 Expressing the eps Gene Clusters from Two Strains of Lactobacillus rhamnosus  

Kang, Hye-Ji (Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS))
LaPointe, Gisele (Department of Food Science, University of Guelph)
Publication Information
Microbiology and Biotechnology Letters / v.46, no.2, 2018 , pp. 91-101 More about this Journal
Abstract
The aim of this study was to transfer the 18.5 kb gene clusters coding for 17 genes from Lactobacillus rhamnosus to Lactococcus lactis subsp. cremoris MG1363 in order to determine the effect of host on exopolysaccharide (EPS) production and to provide a model for studying the phosphorylation of proteins which are proposed to be involved in EPS polymerization. Lactobacillus rhamnosus RW-9595M and ATCC 9595 have 99% identical operons coding for EPS biosynthesis, produced different amounts of EPS (543 vs 108 mg/l). L. lactis subsp. cremoris MG1363 transformed with the operons from RW-9595M and ATCC 9595 respectively, produced 326 and 302 mg/l EPS in M17 containing 0.5% glucose. The tyrosine protein kinase transmembrane modulator (Wzd) was proposed to participate in regulating chain elongation of EPS polymers by interacting with the tyrosine protein kinase Wze. While Wzd was found in phosphorylated form in the presence of the phosphorylated kinase (Wze), no phosphorylated proteins were detected when all nine tyrosines of Wzd were mutated to phenylalanine. Lactococcus lactis subsp. cremoris could produce higher amounts of EPS than other EPS-producing lactococci when expressing genes from L. rhamnosus. Phosphorylated Wzd was essential for the phosphorylation of Wze when expressed in vivo.
Keywords
Exopolysaccharide; gene transfer; tyrosine phosphorylation; transmembrane modulator; protein tyrosine kinase; protein tyrosine phosphatase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vinderola G, Perdigon G, Duarte J, Farnworth E, Matar C. 2006. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36: 254-260.   DOI
2 Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food Microbiol. 40: 169-175.   DOI
3 Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. 2014. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63: 1913-1920.   DOI
4 Ruas-Madiedo P, de los Reyes-Gavilan CG. 2005. Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 88: 843-856.   DOI
5 Ruas-Madiedo P, Hugenholtz J, Zoon P. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163-171.   DOI
6 Van Den Berg D, Robijn GW, Janssen AC, Giuseppin M, Vreeker R, Kamerling JP, et al. 1995. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61: 2840-2844.
7 Faber EJ, Zoon P, Kamerling JP, Vliegenthart JF. 1998. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr. Res. 310: 269-276.   DOI
8 De Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153-177.   DOI
9 Hidalgo-Cantabrana C, Lopez P, Gueimonde M, Clara G, Suarez A, Margolles A, et al. 2012. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics Antimicrob. Proteins 4: 227-237.   DOI
10 Cerning J, Renard C, Thibault J, Bouillanne C, Landon M, Desmazeaud M, et al. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914-3919.
11 De Vuyst L, De Vin F, Vaningelgem F, Degeest B. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687-707.   DOI
12 Morona JK, Morona R, Miller DC, Paton JC. 2003. Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185: 3009-3019.   DOI
13 Péant B, LaPointe G, Gilbert C, Atlan D, Ward P, Roy D. 2005. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology 151: 1839-1851.   DOI
14 Horn N, Wegmann U, Dertli E, Mulholland F, Collins SRA, Waldron KW, et al. 2013. Spontaneous mutation reveals influence of exopolysaccharide on Lactobacillus johnsonii surface characteristics. PLoS One 8: e59957.   DOI
15 Bergmaier D, Champagne C, Lacroix C. 2003. Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol. 95: 1049-1057.   DOI
16 Van Calsteren M-R, Pau-Roblot C, Begin A, Roy D. 2002. Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R. Biochem. J. 363: 7.   DOI
17 Chabot S, Yu HL, De Leseleuc L, Cloutier D, Van Calsteren MR, Lessard M, et al. 2001. Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-in mouse splenocytes. Le Lait 81: 683-697.   DOI
18 Bleau C, Monges A, Rashidan K, Laverdure JP, Lacroix M, Van Calsteren MR, et al. 2010. Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. J. Appl. Microbiol. 108: 666-675.   DOI
19 Minic Z, Marie C, Delorme C, Faurie JM, Mercier G, Ehrlich D, et al. 2007. Control of EpsE, the phosphoglycosyltransferase initiating exopolysaccharide synthesis in Streptococcus thermophilus, by EpsD tyrosine kinase. J. Bacteriol. 189: 1351-1357.   DOI
20 Bender M, Cartee R, Yother J. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185: 6057-6066.   DOI
21 Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. 1951. A colorimetric method for the determination of sugars. Nature 168: 167.
22 LaPointe G, Atlan D, Gilbert C. 2008. Characterization and sitedirected mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus. BMC Biochem. 9: 10.   DOI
23 Dabour N, LaPointe G. 2005. Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl. Environ. Microbiol. 71: 7414-7425.   DOI
24 Audy J, Labrie S, Roy D, LaPointe G. 2010. Sugar source modulates exopolysaccharide biosynthesis in Bifidobacterium longum subsp. longum CRC 002. Microbiology 156: 653-664.   DOI
25 Ogier J-C, Lafarge V, Girard V, Rault A, Maladen V, Gruss A, Leveau J-Y, et al. 2004. Molecular fingerprinting of dairy microbial ecosystems by use of temporal temperature and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 70: 5628-5643.   DOI
26 Holo H, Nes IF. 1989. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55: 3119-3123.
27 Chapot-Chartier M-P, Vinogradov E, Sadovskaya I, Andre G, Mistou M-Y, Trieu-Cuot P, et al. 2010. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J. Biol. Chem. 285: 10464-10471.   DOI
28 Boels IC, van Kranenburg R, Kanning MW, Chong BF, de Vos WM, Kleerebezem M. 2003. Increased exopolysaccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster. Appl. Environ. Microbiol. 69: 5029-5031.   DOI
29 Simon D, Chopin A. 1988. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70: 559-566.   DOI
30 Pham PL, Dupont I, Roy D, Lapointe G, Cerning J. 2000. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl. Environ. Microbiol. 66: 2302-2310.   DOI
31 Abdou L, Boileau C, de Philip P, Pages S, Fiérobe H-P, Tardif C. 2008. Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a cataboliteresponsive element. J. Bacteriol. 190: 1499-1506.   DOI
32 Luesink EJ, Van Herpen RE, Grossiord BP, Kuipers OP, De Vos WM. 1998. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789-798.   DOI
33 Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178-184.   DOI
34 Presecan-Siedel E, Galinier A, Longin R, Deutscher J, Danchin A, Glaser P, et al. 1999. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J. Bacteriol. 181: 6889-6897.
35 Stingele F, Vincent SJ, Faber EJ, Newell JW, Kamerling JP, Neeser JR. 1999. Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol. Microbiol 32: 1287-1295.   DOI
36 Nierop Groot MN, Kleerebezem M. 2007. Mutational analysis of the Lactococcus lactis NIZO B40 exopolysaccharide (EPS) gene cluster: EPS biosynthesis correlates with unphosphorylated EpsB. J. Appl. Microbiol. 103: 2645-2656.   DOI
37 Kang H-J, Gilbert C, Badeaux F, Atlan D, LaPointe G. 2015. A tyrosine phosphorylation switch controls the interaction between the transmembrane modulator protein Wzd and the tyrosine kinase Wze of Lactobacillus rhamnosus. BMC Microbiol. 15: 40.   DOI
38 Gasson MJ. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9.
39 Bender M, Yother J. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276: 47966-47974.   DOI
40 Morona JK, Paton JC, Miller DC, Morona R. 2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35: 1431-1442.
41 Platteeuw C, Simons G, De Vos W. 1994. Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl. Environ. Microbiol. 60: 587-593.
42 van de Guchte M, Van der Vossen J, Kok J, Venema G. 1989. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55: 224-228.