• Title/Summary/Keyword: transition-metal films

Search Result 158, Processing Time 0.03 seconds

Angle-resolved photoemission spectrscopy for chalcogenide and oxide heterostructures (칼코겐화물과 산화물 이종구조의 각도분해능 광전자분광 연구)

  • Chang, Young Jun
    • Vacuum Magazine
    • /
    • v.5 no.2
    • /
    • pp.10-17
    • /
    • 2018
  • Chalcogenide and oxide heterostructures have been studied as a next-generation electronic materials, due to their interesting electronic properties, such as direct bandgap semiconductor, ferroelectricity, ferromagnetism, superconductivity, charge-density waves, and metal-insulator transition, and their modification near heterointerfaces, so called, electronic reconstruction. An angle-resolved photoemission spectroscopy (ARPES) is a powerful technique to unveil such novel electronic phases in detail, especially combined with high quality thin film preparation methods, such as, molecular beam epitaxy and pulsed laser deposition. In this article, the recent ARPES results in chalcogenide and oxide thin films will be introduced.

EFFECTS OF Co-DOPING LEVEL ON THE MICROSTRUCTURAL AND FERROMAGNETIC PROPERTIES OF LIQUID-DELIVERY METALORGANIC-CHEMICAL-VAPOR-DEPOSITED $Ti_{1-x}Co_xO_2$ THIN FILMS

  • Seong, N.J.;Seong, S.G.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.42-43
    • /
    • 2002
  • Spintronics is a rapidly expanding research area because of recent developments in the physics of spin-dependent phenomena. For use as spintronic materials, dilute magnetic semiconductors (DMS) are of considerable interest as spin injectors for spintronic devices.$^{[1]}$ Many researchers have studied DMS, in which transition metal atoms are introduced into the lattice, thus inserting local magnetic moments into the lattice. (omitted)

  • PDF

Fabrication of Superconducting Narrow Bandpass Filters with Parallel Microstrip Line (마이크로스트립 평행결합선을 이용한 초전도 협대역 필터의 제작)

  • Park, Joo-Hyung;Lee, Sang-Yeol;Yoon, Hyung-Kuk;Yoon, Young-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1549-1551
    • /
    • 1998
  • We have designed and developed narrow bandpass multipole filters for satellite communication using $YBa_2Cu_3O_{7-x}$(YBCO) thin films on MgO substrates. The superconducting film used in this study was prepared by laser ablation on one side polished MgO (100) substrates. A Nd:YAG laser was used to fabricate YBCO thin films. The wave length of the laser was 355 nm. The laser beam was focused onto a YBCO target rotating linearly to avoid deep craters that may eject macroscopic YBCO particles. The YBCO films were grown at $750^{\circ}C$ in the oxygen partial pressure of 200 mTorr. The deposited YBCO thin films were patterned by conventional wet-etching method. The transition temperatures of YBCO thin films were 85 - 88 K and the film thicknesses were about 5,000 $\AA$. By comparing the performances of normal-metal filters and YBCO filters, we observed that superconducting YBCO multipole filters have been showed superior performances at 77 K.

  • PDF

The Transparent Semiconductor Characteristics of ZnO Thin Films Fabricated by the RF Magnetron Sputtering Method (RF magnetron sputtering법으로 형성된 ZnO 박막의 투명반도체 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • Recently, the growth of ZnO thin film on glass substrate has been investigated extensively for transparent thin film transistor. We have studied the phase transition of ZnO thin films from metal to semiconductor by changing RF power in the deposition process by RF magnetron sputtering system. The structural, electric, and optical properties of the ZnO thin films were investigated. The film deposited with 75 watt of RF power showed n-type semiconductor characteristic having suitable resistivity $-3.56\;{\times}\;10^{+1}\;{\Omega}cm$, carrier concentration $-2.8\;{\times}\;10^{17}\;cm^{-3}$, and mobility $-0.613\;cm^2V^{-1}s^{-1}$ while other films by 25, 50, 100 watt of RF power closed to metallic films. From the surface analysis (AFM), the number of crystal grain of ZnO thin film increased as RF power increased. The transmittance of the film was over 88% in the visible region regardless of the change in RF power.

Synthesis and Characterization Of Green- and Yellow-Emitting Zinc Silicate Thin Films Doped with Manganese

  • Cho, Yeon Ki;Kim, Joo Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.546-546
    • /
    • 2013
  • Zinc silicate ($Zn_2SiO_4$) has been identified as a suitable host material for a wide variety of luminescent activators, such as transition metal and rare earth elements. In particular, manganese-activated $Zn_2SiO_4$ exhibits highly efficient photoluminescenceand cathodoluminescence, which allows this material to be used in fluorescent lamps and display applications. In this study, we investigated the green and yellow luminescence from Mn-doped $Zn_2SiO_4$ thin films that were synthesized using radio frequency magnetron sputtering followed by annealing at $600{\sim}1,200^{\circ}C$ The refractive index of the $Zn_2SiO_4$: Mn films showed normal dispersion behavior. It was found that the $Zn_2SiO_4$: Mn films annealed at $800^{\circ}C$ ossessed a mixture of alpha and beta phases. The obtained photoluminescence spectrum consisted of two emission bands centered at 525 nm in the green range and 574 nm in the yellow range. The green luminescence originates from the divalent Mn ions in alpha phase of $Zn_2SiO_4$, while the yellow luminescence comes from the divalent Mn ions in beta phase. The films annealed at and above $900^{\circ}C$ xhibited only the alpha phase. The broad PL excitation band was observed ranging from 220 to 300 nm with a maximum at around 243 nm.

  • PDF

Linear and Nonlinear Optical Properties of Vanadium Pentoxide Films Prepared by Pulsed-Laser Deposition

  • Cui, Liqi;Wang, Ruiteng;Wang, Weitian
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.382-385
    • /
    • 2021
  • Well-crystallized vanadium pentoxide V2O5 thin films are fabricated on MgO single crystal substrates by using pulsed-laser deposition technique. The linear optical transmission spectra are measured and found to be in a wavelength range from 300 to 800 nm; the data are used to determine the linear refractive index of the V2O5 films. The value of linear refractive index decreases with increasing wavelength, and the relationship can be well explained by Wemple's theory. The third-order nonlinear optical properties of the films are determined by a single beam z-scan method at a wavelength of 532 nm. The results show that the prepared V2O5 films exhibit a fast third-order nonlinear optical response with nonlinear absorption coefficient and nonlinear refractive index of 2.13 × 10-10 m/W and 2.07 × 10-15 cm2/kW, respectively. The real and imaginary parts of the nonlinear susceptibility are determined to be 3.03 × 10-11 esu and 1.12 × 10-11 esu, respectively. The enhancement of the nonlinear optical properties is discussed.

The critical Mg doping on the blue light emission in p-type GaN thin films grown by metal-organic chemical vapor deposition

  • Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.52-59
    • /
    • 2001
  • The photoluminescence and the photo-current from p-type GaN films were investigated on both room- and low-temperatures for various Mg doping concentrations. At a low Mg doping level, there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the VGa and for an acceptor of MgGa. The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photo-current signal of 3.02-3.31 eV. At a high Mg doping level, there is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band. This center is attributed to the defect structures of MgGa-VN for the deep donor and MgGa for the acceptor. For low. doped samples, thermal annealing provides an additional photo-current signal for an unoccupied deep acceptor levels of 0.87-1.35 eV above valence band, indicating the p-type activation.

  • PDF

Research Trends on Interface-type Resistive Switching Characteristics in Transition Metal Oxide (전이 금속 산화물 기반 Interface-type 저항 변화 특성 향상 연구 동향)

  • Dong-eun Kim;Geonwoo Kim;Hyung Nam Kim;Hyung-Ho Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.32-43
    • /
    • 2023
  • Resistive Random Access Memory (RRAM), based on resistive switching characteristics, is emerging as a next-generation memory device capable of efficiently processing large amounts of data through its fast operation speed, simple device structure, and high-density implementation. Interface type resistive switching offer the advantage of low operation currents without the need for a forming process. Especially, for RRAM devices based on transition metal oxides, various studies are underway to enhance the memory characteristics, including precise material composition control and improving the reliability and stability of the device. In this paper, we introduce various methods, such as doping of heterogeneous elements, formation of multilayer films, chemical composition adjustment, and surface treatment to prevent degradation of interface type resistive switching properties and enhance the device characteristics. Through these approaches, we propose the feasibility of implementing high-efficient next-generation non-volatile memory devices based on improved resistive switching properties.

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF