Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.7.382

Linear and Nonlinear Optical Properties of Vanadium Pentoxide Films Prepared by Pulsed-Laser Deposition  

Cui, Liqi (Institute of Opto-Electronic Information Science and Technology, Yantai University)
Wang, Ruiteng (Institute of Opto-Electronic Information Science and Technology, Yantai University)
Wang, Weitian (Institute of Opto-Electronic Information Science and Technology, Yantai University)
Publication Information
Korean Journal of Materials Research / v.31, no.7, 2021 , pp. 382-385 More about this Journal
Abstract
Well-crystallized vanadium pentoxide V2O5 thin films are fabricated on MgO single crystal substrates by using pulsed-laser deposition technique. The linear optical transmission spectra are measured and found to be in a wavelength range from 300 to 800 nm; the data are used to determine the linear refractive index of the V2O5 films. The value of linear refractive index decreases with increasing wavelength, and the relationship can be well explained by Wemple's theory. The third-order nonlinear optical properties of the films are determined by a single beam z-scan method at a wavelength of 532 nm. The results show that the prepared V2O5 films exhibit a fast third-order nonlinear optical response with nonlinear absorption coefficient and nonlinear refractive index of 2.13 × 10-10 m/W and 2.07 × 10-15 cm2/kW, respectively. The real and imaginary parts of the nonlinear susceptibility are determined to be 3.03 × 10-11 esu and 1.12 × 10-11 esu, respectively. The enhancement of the nonlinear optical properties is discussed.
Keywords
nonlinear; optical properties; transition metal oxides; pulsed-laser deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. C. Wang, Phys. Rev. B, 2, 2045 (1970).   DOI
2 M. E. Lines, Phys. Rev. B, 43, 11978 (1991).   DOI
3 W. Wang, Y. Sun, Z. Dai and D. Guan, Acta Optica Sinica, 26, 1 (2006).   DOI
4 S. H. Wemple, J. Chem. Phys., 67, 2151 (1977).   DOI
5 Y. Deng, A. Pelton and R. A. Mayanovic, MRS Advances, 1, 2737 (2016).   DOI
6 H. Takacs, B. Viala, J. H. Tortai, V. Herman and F. Duclairoir, J. Appl. Phys., 119, 093907 (2016).   DOI
7 S. Fraser, X. Zheng, L. Qiu, D. Li and B. Jia, Appl. Phys. Lett., 107, 031112 (2015).   DOI
8 Y. S. Tamgadge, S. S. Talwatkar, A. L. Sunatkari, V. G. Pahurkar and G. G. Muley, Thin Solid Films, 595, 48 (2015).   DOI
9 S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella and J. Venturini, J. Appl. Phys., 88, 4469 (2000).   DOI
10 S. J. Lim, H. T. Kwak, D. Choi, S. Y. Park and N. Kim, Korean J. Mater. Res., 4, 466 (1994).
11 R. Swanepoel, J. Phps. E: Sci. Instrum., 16, 1214 (1983).   DOI
12 P. B. Chapple, J. Staromlynska, J. A. Hermann and T. J. Mckay, J. Nonlinear Opt. Phys. Mater., 6, 251 (1991).   DOI
13 W. T. Wang, D. Y. Guan, G. Yang, G. Z. Yang, Y. L. Zhou, H. B. Lu and Z. H. Chen, Thin Solid Films, 471, 86 (2005).   DOI
14 R. C. Miller, Appl. Phys. Lett., 5, 17 (1964).   DOI
15 T. Hashimoto, T. Yoko and S. Sakka, Bull. Chem. Soc. Jpn., 67, 653 (1994).   DOI
16 T. Hashimoto, T. Yoko and S. Sakka, J. Ceram. Soc. Jpn., 101, 64 (1993).   DOI
17 M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. V. Stryland, IEEE J. Quantum Electron., 26, 760 (1990).   DOI
18 M. Sheik-Bahae, A. A. Said and E. W. V. Stryland, Opt. Lett., 14, 955 (1989).   DOI
19 W. Wang, C. Shi, X. Su, H. Xing and J. Zhang, Mater. Res. Bull., 41, 2018 (2006).   DOI
20 M. Yin, H. P. Li, S. H. Tang and W. Ji, Appl. Phys. B, 70, 587 (2000).   DOI