• Title/Summary/Keyword: transient temperature distribution

Search Result 222, Processing Time 0.029 seconds

New algorithm for simulating heat transfer in a complex CPFS (Cable Penetration Fire Stop)

  • Yun, Jong-Pil;Kwon, Seong-Pil;Cho, Jae-Kyu;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1798-1803
    • /
    • 2003
  • In this work the dynamic heat transfer occurring in a cable penetration fire stop system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealants. The dynamic heat transfer can be described by a partial differential equation (PDE) and its initial and boundary conditions. For the shake of simplicity PDE is divided into two parts; one corresponding to the heat transfer in the axial direction and the other corresponding to the heat transfer on the vertical layers. Two numerical methods, SOR (Sequential Over-Relaxation) and FEM (Finite Element Method), are implemented to solve these equations respectively. The axial line is discretized, and SOR is applied. Similarly, all the layers are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The heat fluxes on the layers are calculated by FEM. It is shown that the penetration cable influences the temperature distribution of the fire stop system very significantly. The simulation results are shown in the three-dimensional graphics for the understanding of the transient temperature distribution in the fire stop system.

  • PDF

Analysis of Polymer Carbonization using Lasers and its Applications for LCD Manufacturing Process (레이저를 이용한 폴리머 탄화현상 해석 및 LCD 제조공정에서의 응용)

  • Ahn, Dae-Hwan;Bak, Byoung-Gu;Kim, Dong-Eon;Kim, Dong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.24-31
    • /
    • 2010
  • Laser carbonization of a polymer layer can be employed in various applications in the microelectronics industry, e.g repairing brightness pixels of an LCD panel. In this work, the process of thermal degradation of LCD color filter polymer by various laser sources with pulsewidths from CW to fs is studied. LCD pixels are irradiated by the lasers and the threshold irradiance of LCD color filter polymer carbonization is experimentally measured. In the numerical analysis, the transient temperature distribution is calculated and the number density of carbonization in the polymer layer is also estimated. It is shown that all the lasers can carbonize the polymer layers if the output power is adjusted to meet the thermal conditions for polymerization and that pulsed lasers can result in more uniform distribution of temperature and carbonization than the CW laser.

Residual Stress Distribution on the Fillet Weldment used by Finite Element Method (유한요소법을 이용한 필렛용접 이음부의 잔류응력분포)

  • Kim, Hyun Sung;Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.197-207
    • /
    • 2000
  • A transient heat transfer analysis and thermo-elastic analysis have been performed for the residual stress distribution on the fillet weldment used by finite element method. Specimen is fabricated single-pass fillet welding. This computation was performed for conditions including surface heat flux and temperature dependent thermo-physical properties using by heat input as parameter. Also, cut-off temperature of residual stress estimation by thermo-elastic analysis is determined. The fillet weldment were measured to determined their residual stress distributions for using hole-drilling method. As result, it was found that large tensile residual stress is about material yield strength, and the numerical simulation results for finite element method similar to residual stresses by hole-drilling method and other exiting research. Also, cut-off temperature is effectively determined by temperature which calculated maximum thermal stress equal to material yield strength.

  • PDF

A transient CFD simulation of ventilation system operation for smoke control in a subway station equipped with a Platform Screen Door(PSD) when a train under fire is approaching the station (화재열차의 역사 접근 시 PSD가 설치된 역사 제연을 위한 환기장치 운전 비정상상태 해석)

  • Shin, Kyu-Ho;Hur, Nahm-Keon;Won, Chan-Shik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.269-272
    • /
    • 2006
  • The heat and smoke which generated by subway under fire is one of the most harmful factor in air tighten underground station. To prevent this, Trackway Exhaust System(TES) can be used. The heat released from the train running in the tunnel raises the temperature at the platform and the trackway, and thus proper ventilation system is required for comfortable underground environment. When the fire is occurred, TES is operated as smoke exhaust mode from normal ventilation mode. In the present study, the subway station which is one of the line number 9 in Seoul subway is modeled, and fired situation is simulated with several ventilation mode of ventilation system in trackway. For this simulation whole station is modeled. Non steady state 3D simulation which considered train under fire is entering to the station is performed. Temperature and smoke distribution in platform and trackway are compared. To represent heat by fire, heat flux was given to the fired carriage, also to describe smoke by fire, concentration of CO is represented. As the result of present study, temperature and smoke distribution is different as the method of ventilation in trackway and platform is changed. In over side of trackway, the fan must be operated as exhaust mode for efficient elimination of heat and smoke, and supply mode of fan operation in under side shows better distribution of heat and smoke. The ventilation system which is changed from ventilation mode to exhaust mode can be applied to control heat and smoke under fire.

  • PDF

Determination of Thermal Decomposition Parameters for Ablative Composite Materials (삭마용 내열 복합재료의 열분해 반응인자 결정)

  • Kim Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.22-25
    • /
    • 2005
  • The thermal degradation of carbon/phenolic composite have been studied at high temperature by using thermogravimetric (TGA). A heating .ate of 5, 10, 15, 30 and $50^{\circ}C/min$ was used for the determination of thermal decomposition parameters of composite materials at high-temperature service. It has been shown that as the heating rates is increased, the peak decomposition rates are occur at higher temperature. Based on results of thermogravimetric analysis, the pyrolysis process is analyzed and physical and mathematical models for the process are proposed. The thermal analysis also has been conducted using transient heat conduction and the in-depth temperature distribution and the density profile were evaluated along the solid rocket nozzle. As a future effort the thermal decomposition parameter determined in this investigation will be used as input to thermal and mechanical analysis when subjected to solid rocket propulsion environment.

  • PDF

Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements (매스콘크리트 시험체의 수화열 해석 및 실험)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF

Effects of Cutting Angle on Kerf width and Edge Shape in the Hotwire Cutting of EPS Foam for the Case of Single-Sloped Cutting for VLM-s Process (VLM-s 공정을 위한 EPS 폼의 단순 경사 열선 절단시 절단 경사각이 절단폭과 모서리 형상에 미치는 영향)

  • 안동규;양동열
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.525-533
    • /
    • 2003
  • The dimensional accuracy and global roughness between successive layers of VLM-s, which is a new rapid prototyping process using hotwire cutter and EPS foam, depend significantly on the operating parameters of hotwire cutter. In the present study, the effect of cutting angle on the kerf width and edge shape in hotwire cutting of EPS foam for the case of single-sloped cutting with one cutting angle was investigated. Through single-sloped cutting tests, the modified relationship between kerf width and effective heat input, considering the effect of the cutting angle, and the relationship between the melted area and the cutting angle were obtained. In order to investigate the effect of cutting angles on the thermal field in EPS foam, transient heat transfer analyses using single-sloped volumetric heat flux model and locally-conformed mesh were performed. Through the comparison between experimental and numerical results, it was shown that the proposed analysis model is needed to estimate the three-dimensional temperature distribution of the EPS foam for the case of single-sloped hotwire cutting.

Hygrothermoelasticity in a porous cylinder under nonlinear coupling between heat and moisture

  • Ishihara, Masayuki;Yoshida, Taku;Ootao, Yoshihiro;Kameo, Yoshitaka
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to develop practical tools for the mechanical design of cylindrical porous media subjected to a broad gap in a hygrothermal environment. The planar axisymmetrical and transient hygrothermoelastic field in a porous hollow cylinder that is exposed to a broad gap of temperature and dissolved moisture content and is free from mechanical constraint on all surfaces is investigated considering the nonlinear coupling between heat and binary moisture and the diffusive properties of both phases of moisture. The system of hygrothermal governing equations is derived for the cylindrical case and solved to illustrate the distributions of hygrothermal-field quantities and the effect of diffusive properties on the distributions. The distribution of the resulting stress is theoretically analyzed based on the fundamental equations for hygrothermoelasticity. The safety hazard because of the analysis disregarding the nonlinear coupling underestimating the stress is illustrated. By comparing the cylinder with an infinitesimal curvature with the straight strip, the significance to consider the existence of curvature, even if it is infinitesimally small, is demonstrated qualitatively and quantitatively. Moreover, by investigating the bending moment, the necessities to consider an actual finite curvature and to perform the transient analysis are illustrated.

Performance Prediction of Vibration Energy Harvester considering the Dynamic Characteristics of Rotating Tires (회전하는 타이어의 동특성을 고려한 진동에너지 하베스터 성능 예측)

  • Na, Hae-Joong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.87-97
    • /
    • 2020
  • In general, tires require various sensors and power supply devices, such as batteries, to obtain information such as pressure, temperature, acceleration, and the friction coefficient between the tire and the road in real time. However, these sensors have a size limitation because they are mounted on a tire, and their batteries have limited usability due to short replacement cycles, leading to additional replacement costs. Therefore, vibration energy harvesting technology, which converts the dynamic strain energy generated from the tire into electrical energy and then stores the energy in a power supply, is advantageous. In this study, the output voltage and power generated from piezoelectric elements are predicted through finite element analysis under static state and transient state conditions, taking into account the dynamic characteristics of tires. First, the tire and piezoelectric elements are created as a finite element model and then the natural frequency and mode shapes are identified through modal analysis. Next, in the static state, with the piezoelectric element attached to the inside of the tire, the voltage distribution at the contact surface between the tire and the road is examined. Lastly, in the transient state, with the tire rotating at the speeds of 30 km/h and 50 km/h, the output voltage and power characteristics of the piezoelectric elements attached to four locations inside the tire are evaluated.

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.