• Title/Summary/Keyword: transient loads

Search Result 222, Processing Time 0.025 seconds

A Study on the Thermal Design for A Signal Processor in the Micro-Wave Seeker (초고주파 탐색기 신호처리부의 방열설계에 관한 연구)

  • Lee, Won-Hee;Yu, Young-Joon;Kim, Ho-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • This paper focuses on the thermal design of a signal processor in Micro-Wave Seeker. High temperature environment and ESS(Environmental Stress Screening) test condition should be considered in designing a signal processor. First, we performed the thermal analysis to know conditions under which a signal processor is thermally reliable. As a result of thermal analysis, we found that adopting heat transfer block to the thermally fragile components is most efficient, because the heat transfer block can control the thermal loads of the individual components. Next, we verified this solution by numerical simulation and experiment and concluded that thermal reliability of a signal processor can be achieved. Maximum temperature difference between numerical simulation and experiment is about $2^{\circ}C$.

Control of the Bidirectional DC/DC Converter for a DC Distribution Power System in Electric Vehicles (전기 자동차의 DC 배전 시스템을 위한 양방향 DC/DC 컨버터의 제어)

  • Chang, Han-Sol;Lee, Joon-Min;Kim, Choon-Tack;La, Jae-Du;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.943-949
    • /
    • 2013
  • Recently, an electric vehicle (EV) has been become a huge issue in the automotive industry. The EV has many electrical units: electric motors, batteries, converters, etc. The DC distribution power system (DPS) is essential for the EV. The DC DPS offers many advantages. However, multiple loads in the DC DPS may affect the severe instability on the DC bus voltage. Therefore, a voltage bus conditioner (VBC) may use the DC DPS. The VBC is used to mitigate the voltage transient on the bus. Thus, a suitable control technique should be selected for the VBC. In this research, Current controller with fixed switching frequency is designed and applied for the VBC. The DC DPS consist of both a resistor load and a boost converter load. The load variations cause the instability of the DC DPS. This instability is mitigated by the VBC. The simulation results by Matlab simulink and experimental results are presented for validating the proposed VBC and designed control technique.

A Voltage Regulation System for Independent Load Operation of Stand Alone Self-Excited Induction Generators

  • Kesler, Selami;Doser, Tayyip L.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1869-1883
    • /
    • 2016
  • In recent years, some converter structures and analyzing methods for the voltage regulation of stand-alone self-excited induction generators (SEIGs) have been introduced. However, all of them are concerned with the three-phase voltage control of three-phase SEIGs or the single-phase voltage control of single-phase SEIGs for the operation of these machines under balanced load conditions. In this paper, each phase voltage is controlled separately through separated converters, which consist of a full-bridge diode rectifier and one-IGBT. For this purpose, the principle of the electronic load controllers supported by fuzzy logic is employed in the two-different proposed converter structures. While changing single phase consumer loads that are independent from each other, the output voltages of the generator are controlled independently by three-number of separated electronic load controllers (SELCs) in two different mode operations. The aim is to obtain a rated power from the SEIG via the switching of the dump loads to be the complement of consumer load variations. The transient and steady state behaviors of the whole system are investigated by simulation studies from the point of getting the design parameters, and experiments are carried out for validation of the results. The results illustrate that the proposed SELC system is capable of coping with independent consumer load variations to keep output voltage at a desired value for each phase. It is also available for unbalanced consumer load conditions. In addition, it is concluded that the proposed converter without a filter capacitor has less harmonics on the currents.

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

A Disturbance Observer-Based Robust Controller Against Load Variations in a Single Phase DC/AC Inverter System (단상 DC/AC 인버터 시스템의 부하변동을 고려한 외란 관측기 기반 제어기)

  • Kim, Sung-Jong;Jeong, Yu-Seok;Son, Young-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.21-26
    • /
    • 2007
  • Output voltage waves of a DC/AC inverter system are likely to be distorted if variable loads e.g. motors or rectifiers exist in the output terminal. This paper designs a disturbance observer-based PI-controller for a single-phase inverter system that is robust against load changes. In this Paper, we regard the output voltage changes due to various loads as disturbances of the control system. Then we design a disturbance observer for estimation of the disturbances caused by the load current and any other error sources (such as parameter uncertainties and model mismatches etc.). In order to test the performance of the proposed control law, simulation studies are carried out for a single-phase inverter system using SimPowerSystem of Matlab Simuink. Compared to a simple PI-control, the disturbance observer-based controller shows enhanced performance in transient responses for step load changes.

Experimental and numerical investigation on post-earthquake fire behaviour of the circular concrete-filled steel tube columns

  • Wang, Yu-Hang;Tang, Qi;Su, Mei-Ni;Tan, Ji-Ke;Wang, Wei-Yong;Lan, Yong-Sen;Deng, Xiao-Wei;Bai, Yong-Tao;Luo, Wei;Li, Xiao-Hua;Bai, Jiu-Lin
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.17-31
    • /
    • 2021
  • Post-earthquake fire is a common disaster which causes serious safety issues to infrastructures. This study aims to investigate the residual loading capacities of circular concrete-filled steel tube (CFST) columns under post-earthquake fire experimentally and numerically. The experimental programme contains two loading steps - pre-damage cyclic loading at room temperature and transient state tests with constant compression loads. Three finite element models are developed and validated against the test results. Upon validation, a total of 48 numerical results were generated in the parametric study to investigate the effects of thickness and strengths of steel tube, axial compression ratio and damage degree on the fire resistance of circular CFST columns. Based on the analysis on experimental and numerical results, the loading mechanism of circular CFST columns is discussed. A design method is proposed for the prediction of fire resistance time under different seismic pre-damage and compression loads. The predictions by the new method is compared with the newly generated experimental and numerical results and is found to be accurate and consistent with the mean value close to the unity and a coefficient of variation around 1%.

Dynamic Analysis of Structures under Moving Loads in Time and Frequency Domain (이동하중을 받는 구조물에 대한 시간영역과 주파수영역에서의 동적해석)

  • Kong, Min Sik;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.87-94
    • /
    • 2007
  • A structural dynamic analysis can be divided into a time domain analysis and a frequency domain analysis. The time domain analysis makes use of a direct integration method or a mode superposition method and the frequency domain analysis applies a DFT method. Generally the DFT method is more effective method in case of calculating response of periodic excitation. But in case of transient excitation exact solution can not be acquired. So, by modifying the response or increasing the period accuracy of solution can be enhanced. Accordingly this study analyzed dynamic responses of structures under aperiodic moving load in time domain and frequence domain. Consequently it is concluded that exact solution would be get enough using DFT method by increasing the duration of free vibration or modifying the dynamic response.

Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature (화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2007
  • Concrete tunnel lining must be designed to having the fireproof performance because the lining are sometimes exposed to very high temperature due to traffic accident. Such fire temperature may cause explosion of concrete, or collapse of tunnel structure. The purpose of this study is to obtain the fundamental fireproof behavior of fire resistance-engineered cementitious composites(FR-ECC) under fire temperature in order to use the fire protection material in tunnel lining system. The present study conducted the experiment to simulate fire temperature by employing 2 types of FR-ECC and investigated experimentally the explosion and cracks in heated surface of these FR-ECC. Employed temperature curve were hydro carbon(HC, ECl) criterion, which are severe in various criterion of fire temperature. The numerical analysis is carried out the nonlinear transient heat flow analysis and verified against the experimental data. The complex features of behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. By the use of analytical model, the concrete tunnel subjected to fire loads were analyzed and discussed. With comparison of current concrete materials and FR-ECC, the experimental and analytical results of FR-ECC shows the better fire resistance performance than the other.

Temperature-Dependency Thermal Properties and Transient Thermal Analysis of Structural Frames Exposed to Fire (온도의존성 열특성 계수를 고려한 화재에 노출된 철근콘크리트 골조의 해석적 연구)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan;Shin, Yeong-Soo;Choi, Eun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.283-292
    • /
    • 2007
  • A research projects is currently being conducted to develop a nonlinear finite element analysis methods for predicting the structural behavior of reinforced concrete frame structures, exposed to fire. As part of this, reinforced concrete frames subjected to fire loads were analyzed using the nonlinear finite-element program DIANA. Two numerical steps are incorporated in this program. The first step carries out the nonlinear transient heat flow analysis associated with fire and the second step predicts the structural behavior of reinforced concrete frames subjected to the thermal histories predicted by first step. The complex features of structural behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. A concrete material model based on nonlinear fracture mechanics to take cracking into account and plasticity models for concrete in compression and reinforcement steel were used. The material and analytical models developed in this paper are verified against the experimental data on simple reinforced concrete beams. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. Although, this study considers codes standard fire for reinforced concrete frame, any other time-temperature relationship can be easily incorporated.

A Study on the Transient Operation Algorithm in Micro-grid based on CVCF Inverter (CVCF 인버터 기반의 Micro-grid에 있어서 과도상태 운용알고리즘에 관한 연구)

  • Lee, Hu-Dong;Choi, Sung-Sik;Nam, Yang-Hyun;Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.526-535
    • /
    • 2018
  • Recently, in order to reduce the $CO_2$ emission in the island area, countermeasures to operate power system in a stable manner are being researched due to decrease of the operation rate in diesel generators and the increase of renewable energy sources. The phenomenon of energy sinking can be occurred if the output of renewable energy sources is larger than customer loads. Voltage of CVCF(constant voltage & constant frequency) battery could be increased rapidly according to the condition of SOC(state of charge) and blackout could be occurred due to shut-down of CVCF inverter, at carbon free island micro-grid based on the CVCF inverter. In order to overcome these problems, this paper proposes a transient operation algorithm in CVCF based micro-grid which in advance prevents shut-down of CVCF inverter during the energy sinking. And also this paper proposes the modeling of micro-grid including CVCF inverter, PV system, customer load using PSCAD/EMTDC S/W. From the results of micro-grid modeling based on the proposed algorithm, it is confirmed that CVCF based micro-grid can properly prevent shut-down of CVCF inverter according to SOC and battery voltage of CVCF inverter when energy sinking is occurred.