• Title/Summary/Keyword: transient loading

Search Result 170, Processing Time 0.022 seconds

Analysis of Elasto-Plastic Dynamic Behaviour of Plate Subjected to Load by Low Velocity Impact (저속충격 하중을 받는 판의 탄소성 동적거동 해석)

  • Huh, Gyoung-Jae;Dokko, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.158-164
    • /
    • 2000
  • In this study a computer program is developed for analyzing the elasto-plastic dynamic behaviors of the plate subjected to line-loading by a low-velocity impactor. The equilibrium equation associated with the Hertzian contact law is formulated to evaluate the transient dynamic behaviour of the impacted plate. Compared with an elastic analysis, the effects of material plasticity are presented. Consequently, in the case of elasto-plastic analysys, impulse decreases, displacements increase and contact time duration is longer than the elastic case for same finite element model. And the time variation of the impacting load is not significant due to the plasticity except at the beginning of impact duration, and the induced stresses of the plate are more realistic.

  • PDF

Dynamic Characteristics Analysis of a Rigid Rotor System Supported by Journal Air Bearings (저널 공기 베어링에 의해 지지되어진 강체 로터 계의 동특성 해석)

  • 권대규;곡순이;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1026-1031
    • /
    • 2001
  • In this paper. the dynamic characteristics of a super high-speed tilting-pad air bearing(TPGB) used in a turbo expander with high expansion ratio are analyzed. The dynamic behavior and stability of a rotary system supported by two journal air bearings are investigated numerically. The transient response of the shaft is obtained by simultaneously solving the equation of motion of the shaft and the dynamic Reynolds equation. The stiffness and damping coefficients of the bearing are calculated from the loading coefficients of the bearing are calculated from the loading capacity. shaft velocity and displacement by using a curve fitting method. The natural frequencies of the 1st and 2nd rigid modes can be calculated from these coefficients. The theoretical method of a rigid rotor system is verified by experimentsut.

  • PDF

Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

  • Wang, Haitao;Han, En-Hou
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.64-68
    • /
    • 2017
  • The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

Dynamic behavior of H-shape tall building subjected to wind loading computed by stochastic and CFD methodologies

  • Lucas Willian Aguiar Mattias;Joao Elias Abdalla Filho
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.229-243
    • /
    • 2023
  • This study analyzes the response of a tall building with an H-shaped cross-section when subjected to wind loading generated by the same H-shape. As normative standards usually adopt regular geometries for determining the wind loading, this paper shows unpublished results which compares results of the dynamic response of H-shaped buildings with the response of simplified section buildings. Computational Fluid Dynamics (CFD) is employed to determine the steady wind load on the H-shaped building. The CFD models are validated by comparison with wind tunnel test data for the k-ε and k-ω models of turbulence. Transient wind loading is determined using the Synthetic Wind Method. A new methodology is presented that combines Stochastic and CFD methods. In addition, time-history dynamic structural analysis is performed using the HHT method for a period of 60 seconds on finite element models. First, the along-wind response is studied for wind speed variations. The wind speeds of 28, 36, 42, and 50 m/s at 0° case are considered. Subsequently, the dynamic response of the building is studied for wind loads at 0°, 45°, and 90° with a wind speed of 42 m/s, which approximates the point of resonance between gusts of wind and the structure. The response values associated with the first two directions for the H-shaped building are smaller than those for the R-shaped (Equivalent Rectangular Shape) one. However, the displacements of the H-shaped building associated with the latter wind load are larger.

Wave propagation in a concrete filled steel tubular column due to transient impact load

  • Ding, Xuanming;Fan, Yuming;Kong, Gangqiang;Zheng, Changjie
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.891-906
    • /
    • 2014
  • This study aims to present a three dimensional finite element model to investigate the wave propagation in a concrete filled steel tubular column (CFSC) due to transient impact load. Both the concrete and steel are regarded as linear elastic material. The impact load is simulated by a semi sinusoidal impulse. Besides the CFSC models, a concrete column (CC) model is established for comparing under the same loading condition. The propagation characteristics of the transient waves in CFSC are analyzed in detail. The results show that at the intial stage of the wave propagation, the velocity waves in CFSC are almost the same as those in CC before they arrive at the steel tube. When the waves reach the column side, the velocity responses of CFSC are different from those of CC and the difference is more and more obvious as the waves travel down along the column shaft. The travel distance of the wave front in CFSC is farther than that in CC at the same time. For different wave speeds in steel and concrete material, the wave front in CFSC presents an arch shape, the apex of which locates at the center of the column. Differently, the wave front in CC presents a plane surface. Three dimensional effects on top of CFSC are obvious, therefore, the peak value and arrival time of incident wave crests have great difference at different locations in the radial direction. High-frequency waves on the waveforms are observed. The time difference between incident and reflected wave peaks decreases significantly with r/R when r/R < 0.6, however, it almost keeps constant when $r/R{\geq}0.6$. The time duration between incident and reflected waves calculated by 3D FEM is approximately equal to that calculated by 1D wave theory when r/R is about 2/3.

Experimental and numerical investigation on post-earthquake fire behaviour of the circular concrete-filled steel tube columns

  • Wang, Yu-Hang;Tang, Qi;Su, Mei-Ni;Tan, Ji-Ke;Wang, Wei-Yong;Lan, Yong-Sen;Deng, Xiao-Wei;Bai, Yong-Tao;Luo, Wei;Li, Xiao-Hua;Bai, Jiu-Lin
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.17-31
    • /
    • 2021
  • Post-earthquake fire is a common disaster which causes serious safety issues to infrastructures. This study aims to investigate the residual loading capacities of circular concrete-filled steel tube (CFST) columns under post-earthquake fire experimentally and numerically. The experimental programme contains two loading steps - pre-damage cyclic loading at room temperature and transient state tests with constant compression loads. Three finite element models are developed and validated against the test results. Upon validation, a total of 48 numerical results were generated in the parametric study to investigate the effects of thickness and strengths of steel tube, axial compression ratio and damage degree on the fire resistance of circular CFST columns. Based on the analysis on experimental and numerical results, the loading mechanism of circular CFST columns is discussed. A design method is proposed for the prediction of fire resistance time under different seismic pre-damage and compression loads. The predictions by the new method is compared with the newly generated experimental and numerical results and is found to be accurate and consistent with the mean value close to the unity and a coefficient of variation around 1%.

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

Numerical Study of Drop/impact test and Shock/impact Survivability Test for ELT(Emergency Locator Transmitter) Operations (ELT(Emergency Locator Transmitter) 운용을 위한 낙하 충격 및 추락생존성 시험에 대한 수치 해석적 연구)

  • Jung, Do-Hee;Baek, Jong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1229-1235
    • /
    • 2008
  • ELT(emergency locator transmitter) has assisted in the rescue of thousands of lives in distress. Aviators, mariners and land users being equipped with distress beacons are capable of transmitting distress signals to the satellites in emergency situations anywhere in the world. In this paper, Drop/Impact simulation was performed for ELT Body-case. FE model for Body-case was constructed with MSC/Dytran and refined using the Karas example simulation for Body-case prototype. Shock/impact survivability analysis was performed for ELT operations. FE model constructed with MSC/Nastran. Transient response analysis for refined ELT model was perfomed for ELT under impact shock loading condition.

Improved Design in Fishing Operation System for Small Inshore and Coastal Fishing Vessels-I -Design of a Automatic Winch System- (소형 연근해 어선의 조업 시스템 개선에 관한 연구-I -자동 권양 윈치 시스템의 설계-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.12-24
    • /
    • 2000
  • The electro-hydraulic servo winch system built in a automatic tension control equipment was designed with a latent need for an advanced system in fishing operations of the inshore and coastal fishing vessels. In order to keep the constant tension condition of warp under loading, a tension control circuit was added to the servo winch system.The dynamic performance in the open loop behaviour of the designed winch system was investigated and its applicability was tested for various possibilities of load using a load generator especially developed in order to this study.The mechanical characteristics of this system is different from that of a conventional type, that is, the tension, length, line speed and drum revolution can be automatically controlled by the information from various sensors, such as torque, rpm and pressure transducers. from the experiment results, it was verified that the servo winch system has very good output and tracking behaviour for the control input signals in different operating conditions though overshoot of out 8% in the transient characteristics of torque under the load though a overshoot of about 8% in the transient characteristics of torque under the load condition can be observed when the opening of servo valve, adjustable by the input voltage between - 10 V up to 10 V, changed suddenly.Consequently, the improved fishing winch system can be effectively used as the automatic shooting and hauling equipment of low cost for small inshore and coastal fishing vessels which engage in net fishing.

  • PDF

Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force (전자기력을 이용한 박판 성형공정의 해석적 연구)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.