DOI QR코드

DOI QR Code

Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

  • Wang, Haitao (Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Han, En-Hou (Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences)
  • Received : 2017.02.09
  • Accepted : 2017.04.18
  • Published : 2017.04.30

Abstract

The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

Keywords

References

  1. G. S. Frankel, J. Electrochem. Soc., 145, 2186 (1998). https://doi.org/10.1149/1.1838615
  2. Gonzale-Garcia Y, G. T. Burstein, S. Gonzalez, and R. M. Souto, Electrochem. Commun., 6, 637 (2004). https://doi.org/10.1016/j.elecom.2004.04.018
  3. B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems, pp. 21-65, Cambridge University Press, Cambridge (1998).
  4. H. T. Wang and E. H. Han, J. Mater. Sci. Technol., 28, 427 (2012). https://doi.org/10.1016/S1005-0302(12)60078-4
  5. G. Engelhardt and D. D. Macdonald, Corros. Sci., 46, 2755 (2004). https://doi.org/10.1016/j.corsci.2004.03.014
  6. B. Malki and B. Baroux, Corros. Sci., 47, 171 (2005). https://doi.org/10.1016/j.corsci.2004.05.004
  7. C. Vautrin-Ul, H. Mendy, A. Taleb, A. Chausse, J. Stafiej, and J. P. Badiali, Corros. Sci., 50, 2149 (2008). https://doi.org/10.1016/j.corsci.2008.03.012
  8. L. Li, X. G. Li, C. F. Dong, and Y. Z. Huang, Electrochim. Acta, 54, 6389 (2009). https://doi.org/10.1016/j.electacta.2009.05.093
  9. E. M. Gutman, G. Solovioff, and D. Eliezer, Corros. Sci., 38, 1141 (1996). https://doi.org/10.1016/0010-938X(96)00008-X
  10. H. T. Wang and E. H. Han, Electrochim. Acta, 90, 128 (2013). https://doi.org/10.1016/j.electacta.2012.11.056
  11. B. Chopard, L. Frachebourg, and M. Droz, Int. J. Mod. Phys. C, 5,, 47 (1994). https://doi.org/10.1142/S0129183194000052
  12. P. C. Pistorius and G. T. Burstein, Phil. Trans. Phys. Sci. Eng., 341, 531 (1992). https://doi.org/10.1098/rsta.1992.0114
  13. G. S. Frankel, L. Stockert, F. Hunkeler, and H. Boehni, Corrosion, 43, 429 (1987). https://doi.org/10.5006/1.3583880