• Title/Summary/Keyword: transient dynamic analysis

Search Result 535, Processing Time 0.024 seconds

Transient analysis of point defect dynamics in czochralski-grown silicon crystals

  • Wang, Jong-Hoe;Oh, Hyun-Jung;Park, Bong-Mo;Lee, Hong-Woo;Yoo, Hak-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.259-263
    • /
    • 2001
  • The continuum model of transient point defect dynamics to predict the concentrations of interstitial and vacancy is established by estimating expressions for the thermophysical properties of intrinsic point defects. And the point defect distribution in a Czochralski-grown 200 mm silicon crystal and the location of oxidation-induced stacking fault ring(OiSF-ring) created during the cooling of crystals are calculated by using the numerical analysis. The purpose of this paper is to show that his approach lead to predictions that are consistent with experimental results. Predicted point defect distributions by transient point defect dynamic analysis are in good qualitative agreement with experimental data under widely and abruptly varying crystal pull rates when correlated with the position of the OiSF-ring .

  • PDF

Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method (특수 적분해 경계요소법에 의한 2차원 및 3차원 동적 탄소성 응력 해석)

  • Kim, Jae-Suk;Owatsiriwong, Adisorn;Park, Kyung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • The particular integral formulation for two(2D) and three(3D) dimensional inelastic transient dynamic stress analysis is presented. The elastostatic equation is used for the complementary solution. Using the concept of global shape function, the particular integrals for displacement and traction rates are obtained to approximate acceleration of the inhomogeneous equation. The Houbolt time integration scheme is used for the time-marching process. The Newton-Raphson algorithm for plastic multiplier is used to solve the system equation. Numerical results of four example problems are given to demonstrate the validity and accuracy of the present formulation.

Dynamic Behavior Analysis of Rotor-Bearing System Under External Forces in Swash Plate Compressor (외부 가진력을 고려한 사판식 압축기 회전축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2001
  • The dynamic behavior of rotor-bearing system used in swash plate compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for swash plate, disk pulley and bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at swash plate and driving pulley. And, the steady state displacements of the rotor are compared with a variation in unbalance mass. Results show that the loci of rotating shaft considering unbalance forces and external compression forces are more severe in flutter motion than with only unbalance forces.

Dynamic Analysis of Engine Response to Throttle Tip-in/Tip-out (Tip-in/Tip-out 시의 엔진의 동적 거동 해석)

  • Ko, Kang-Ho;Kook, Hyung-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.540-545
    • /
    • 2001
  • In this paper dynamic responses of an engine, which is supported by hydraulic mount, to throttle tip-in/tip out are analyzed. Because the hydraulic mounts have non-linearity which the characteristics of stiffness and damping vary with frequencies, it is difficult to analyze the dynamic behavior of an engine using general integral algorithms. Convolution integrals and relationships between unit impulse response functions and frequency response functions are therefore used to simulate the transient behavior of an engine indirectly. In time domain, impulse response functions are calculated by two-side discrete inverse Fourier transform of frequency response function achieved by Laplace transform of equations of motion. Considering the fact that the shapes of behavior of an engine simulated by the proposed method are in good agreement with test results, it is confirmed that the proposed method is very effective for the analysis of transient response to throttle tip-in/out of an engine with hydraulic mounts.

  • PDF

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

Dynamic Analysis of an Ammonia-Water Absorption Chiller (암모니아-물 흡수식 냉각기의 동적 해석)

  • Kim Byong Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.990-998
    • /
    • 2004
  • Dynamic behavior of an ammonia-water absorption system was investigated numerically. Thermal-hydraulic model for a single-effect 3 RT chiller was developed by applying transient conservation equations of total mass, $NH_3$ mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analyses were performed to quantify the effects of bulk concentration and charging ratio on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum charging ratio and bulk concentration were to found to exist, which resulted in the maximum cooling capacity and COP. The time constant increased as the charging ratio increased, but decreased with the increase of bulk concentration.

Transient dynamic analysis of sandwich beam subjected to thermal and pulse load

  • Layla M. Nassir;Mouayed H.Z. Al-Toki;Nadhim M. Faleh;Hussein Alwan Khudhair;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Transient dynamic behavior of a sandwich beam under thermal and impulsive loads has been researched in the context of higher-order beam theory. The impulse load of blast type has been enforced on the top exponent of the sandwich beam while it is in a thermal environment. The core of the sandwich beam is cellular with auxetic rectangular pattern, whereas the layers have been built with the incorporation of graphene oxide powder (GOP) and are micromechanically introduced through Halpin-Tsai formulization. Governing equations for the sandwich beam have been solved through inverse Laplace transform style for obtaining the dynamical deflections. The connection of beam deflections on temperature variability, GOP quantity, pulse load situation and core relative density has been surveyed in detail.

A Study on the Convergence Characteristics Analysis of Chaotic Dynamic Neuron (동적 카오틱 뉴런의 수렴 특성에 관한 연구)

  • Won-Woo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Biological neurons generally have chaotic characteristics for permanent or transient period. The effects of chaotic response of biological neuron have not yet been verified by using analytical methods. Even though the transient chaos of neuron could be beneficial to overcoming the local minimum problem, the permanent chaotic response gives adverse effect on optimization problems in general. To solve optimization problems, which are needed in almost all neural network applications such as pattern recognition, identification or prediction, and control, the neuron should have one stable fixed point. In this paper, the dynamic characteristics of the chaotic dynamic neuron and the condition that produces the chaotic response are analyzed, and the convergence conditions are presented.

  • PDF

A performance based strategy for design of steel moment frames under blast loading

  • Ashkezari, Ghasem Dehghani
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.155-164
    • /
    • 2018
  • Design of structures subjected to blast loads are usually carried out through nonlinear inelastic dynamic analysis followed by imposing acceptance criteria specified in design codes. In addition to comprehensive aspects of inelastic dynamic analyses, particularly in analysis and design of structures subjected to transient loads, they inherently suffer from convergence and computational cost problems. In this research, a strategy is proposed for design of steel moment resisting frames under far range blast loads. This strategy is inspired from performance based seismic design concepts, which is here developed to blast design. For this purpose, an algorithm is presented to calculate the capacity modification factors of frame members in order to simplify design of these structures subjected to blast loading. The present method provides a simplified design procedure in which the linear dynamic analysis is preformed, instead of the time-consuming nonlinear dynamic analysis. Nonlinear and linear analyses are accomplished in order to establish this design procedure, and consequently the final design procedure is proposed as a strategy requiring only linear structural analysis, while acceptance criteria of nonlinear analysis is implicitly satisfied.

Ignition Transient Mechanism in an Entire Integrated Rocket Ramjet Engine (램제트 엔진의 점화 천이에 관한 연구)

  • ;Vigor Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.12-20
    • /
    • 2000
  • The numerical analysis, including chemical reaction of an entire ramjet engine is studied to understand the ignition transient mechanism and the dynamic characteristics of the Integrated Rocket Ramjet System comprehensively. Details of how a subsonic combustion environment is established from the supersonic ram air after removal of the inlet port cover, are examined during the ignition transient. Various physical processes are investigated systemically, including ignition, flame propagation, flame dynamics, and vorticity evolution.

  • PDF