• Title/Summary/Keyword: transient characteristics

Search Result 1,791, Processing Time 0.025 seconds

Introduction to System Modeling and Verification of Digital Phase-Locked Loop (디지털 위상고정루프의 시스템 모델링 및 검증 방법 소개)

  • Shinwoong, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • Verilog-HDL-based modeling can be performed to confirm the fast operation characteristics after setting the design parameters of each block considering the stability of the system by performing linear phase-domain modeling on the phase-locked loop. This paper proposed Verilog-HDL modeling including DCO noise and DTC nonlinear characteristic. After completing the modeling, the time-domain transient simulation can be performed to check the feasibility and the functionality of the proposed PLL system, then the phase noise result from the system design based on the functional model can be verified comparing with the ideal phase noise graph. As a result of the comparison of simulation time (6 us), the Verilog-HDL-based modeling method (1.43 second) showed 484 times faster than the analog transistor level design (692 second) implemented by TSMC 0.18-㎛.

The Effect of Surface Tension on the Transient Free-Surface Flow near the Intersection Point (교차점 부근의 과도자유표면유동에 미치는 표면장력의 영향)

  • Lee, G.J.;Rhee, K.P.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.104-117
    • /
    • 1991
  • When a body starts to move, the flow near the intersection point between a body and a free surface changes violently and rapidly in a very short initial time interval. This flow phenomena must be investigated whenever one treats the interaction between a body and a fluid, such as the motion of a floating body, sloshing in a tank, wave maker problem, entry of a body into a fluid etc.. Until Roberts(1987), it was widely accepted that a singularity exists at the intersection point. However, he showed that the singularity does not exist if a body moves non-impulsively. In this paper, an analytical solution cosistent for the case of impulsive motion of a body is obtained by including the effect of surface tension. From the characteristics of the newly obtained solution, a critical value associated with an oscillating phenomenon is found, and further more, it is shown that the oscillating phenomenon does not appear in the region where the distance form the intersection point is less than this critical value.

  • PDF

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen ;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3423-3440
    • /
    • 2023
  • In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.

T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship (선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어)

  • Yu-Soo LEE;Soon-Kyu HWANG;Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.

Application of cold atmospheric microwave plasma as an adjunct therapy for wound healing in dogs and cats

  • Jisu Yoo;Yeong-Hun Kang;Seung Joon Baek;Cheol-Yong Hwang
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.56.1-56.13
    • /
    • 2023
  • Background: Cold atmospheric plasma is a novel innovative approach for wound care, and it is currently underrepresented in veterinary medicine. Objectives: To investigate the efficacy and safety of using cold atmospheric microwave plasma (CAMP) as an adjunct therapy for wound healing in dogs and cats. Methods: Wound healing outcomes were retrospectively analyzed using clinical records of client-owned dogs and cats who were first managed through standard wound care alone (pre-CAMP period) and subsequently via CAMP therapy (CAMP period). The degree of wound healing was estimated based on wound size and a modified wound scoring system. Results: Of the 27 acute and chronic wounds included in the analysis, 81.48% showed complete healing after the administration of CAMP as an adjunct therapy to standard care. Most wounds achieved complete healing in < 5 weeks. Compared with the pre-CAMP period, the rate of wound healing significantly increased every week in the CAMP period in terms of in wound size (first week, p < 0.001; second week, p = 0.012; third week, p < 0.001) and wound score (first week, p < 0.001; second week, p < 0.001; third week, p = 0.001). No adverse events were noted except for mild discomfort and transient erythema. Conclusions: CAMP is a well-tolerated therapeutic option with immense potential to support the treatment of wounds of diverse etiology in small animal practice. Further research is warranted to establish specific criteria for CAMP treatment according to wound characteristics.

Reading Elizabeth Bishop in Her Relationship with Moore and Lowell: Looking into the "Intrinsic Qualities" of Bishop's Poetry (무어, 로월과의 관계 속에서 엘리자베스 비숍 읽기 -비숍 시의 "내적 특성" 들여다보기)

  • Kim, Yangsoon
    • Journal of English Language & Literature
    • /
    • v.55 no.1
    • /
    • pp.25-59
    • /
    • 2009
  • This study explores the characteristics of Elizabeth Bishop's poetry in comparison with the two of her closest friends and poets, Marianne Moore and Robert Lowell. Bishop's reputation has dramatically changed since her death. In the 1970s she was "a writer's writer's writer," and admired by a small group of poets or critics. Since 1990s, however, there has been a great shift in the evaluation of her poetry, which is so called "The Elizabeth Bishop Phenomenon." It does not seem to be an easy task to examine what has driven the phenomenon, and why she used to be a minor poet or "the most honored yet most elusive of poets" but now she has a widespread recognition by the academy and beyond it. The "intrinsic qualities" of Bishop's poetry, however, can be one of the main reasons why it took several decades for Bishop to become a central figure in the literary canon. Looking into her "intrinsic qualities," this paper discusses Bishop's "The Fish," "Roosters" through the Moore-Bishop relationship, and reads Bishop's "Armadillo" and "The Monument" through the Lowell-Bishop relationship. It also deals with letters, interviews, Moore's "The Fish," and Lowell's "Skunk Hour" and "For the Union Dead" to show the Bishop's deep and complex relationships with the two poets, and more importantly their differences. Bishop's poetry is difficult, "elusive," and sometimes "enigmatic," not because her texts are full of difficult words to understand but because there are the subtle interchange between perception and meaning, "the dynamics of keen feeling," the unresolved patterns, and the transient vision under the seemingly transparent surface of the texts.

Augmenting external surface pressures' predictions on isolated low-rise buildings using CFD simulations

  • Md Faiaz, Khaled;Aly Mousaad Aly
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.255-274
    • /
    • 2023
  • The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an isolated building are provided based on revised findings. Moving on to the second part, the Silsoe cube model is examined within a horizontally homogeneous computational domain using more accurate turbulence models, such as Large Eddy Simulation (LES) and hybrid RANS-LES models. For computational efficiency, transient simulation settings are employed, building upon previous studies by the authors at the Windstorm Impact, Science, and Engineering (WISE) Lab, Louisiana State University (LSU). An optimal meshing strategy is determined for LES based on a grid convergence study. Three hybrid RANS-LES cases are investigated to achieve desired enhancements in the distribution of mean pressure coefficients on the Silsoe cube. In the final part, a 1:10 scale model of the TTU building is studied, incorporating the insights gained from the second part. The generated flow characteristics, including vertical profiles of mean velocity, turbulence intensity, and velocity spectra (small and large eddies), exhibit good agreement with full-scale (TTU) measurements. The results indicate promising roof pressures achieved through the careful consideration of meshing strategy, time step, domain size, inflow turbulence, near-wall treatment, and turbulence models. Moreover, this paper demonstrates an improvement in mean roof pressures compared to other state-of-the-art studies, thus highlighting the significance of CFD simulations in building aerodynamics.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

Improvement of transmission-line-based fault locating for typical traveling-wave accelerator with constant-gradient structures

  • T.N. Hu;Y.F. Zeng;K. Peng;H. Hu;H.M. Wang;K.F. Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2011-2018
    • /
    • 2024
  • Since RF breakdown is one of the primary limitations to improving the performances of RF accelerators, extensive efforts have been dedicated to locating the breakdowns. However, most existing methods rely on specialized techniques, resulting in high financial burdens. Although the method based on transient response of transmission line (TL) is suitable for facilities with sporadic recoverable breakdowns, practical operations are susceptible to notable errors. This study revisits the fundamental theories of lossless TL and investigates the wave process to understand the characteristics of the reversed pulse induced by the breakdowns. By utilizing steadystate response of the TL and employing phasor method, we derive analytical formulas to determine the exact location of breakdowns within the faulty cell for constant-gradient TW accelerator. Furthermore, the derived formulas demonstrate their independence from RF phase, thereby distinguishing them from traditional phasebased methods. Additionally, experimental validations are conducted at the HUST injector, and the results confirm the consistency of the analysis. Thus, the proposed method represents a promising improvement over the TL-based approaches and serves as a valuable complement to current techniques. Importantly, this method demonstrates particular advantages for constructed TW accelerators seeking to achieve a balance among high performance, low costs, and compact layouts.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.