• 제목/요약/키워드: transient Storage model

검색결과 59건 처리시간 0.025초

Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구 (A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System)

  • 함윤영;박수열
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

A Practical Exciter Model Reduction Approach For Power System Transient Stability Simulation

  • Kim, Soobae
    • 조명전기설비학회논문지
    • /
    • 제29권10호
    • /
    • pp.89-96
    • /
    • 2015
  • Explicit numerical integration methods for power system transient stability simulation require very small time steps to avoid numerical instability. The EXST1 exciter model is a primary source of fast dynamics in power system transients. In case of the EXST1, the required small integration time step for entire system simulation increases the computational demands in terms of running time and storage. This paper presents a practical exciter model reduction approach which allows the increase of the required step size and thus the method can decrease the computational demands. The fast dynamics in the original EXST1 are eliminated in the reduced exciter model. The use of a larger time step improves the computational efficiency. This paper describes the way to eliminate the fast dynamics from the original exciter model based on linear system theory. In order to validate the performance of the proposed method, case studies with the GSO-37 bus system are provided. Comparisons between the original and reduced models are made in simulation accuracy and critical clearing time.

저장대모형의 매개변수 산정을 위한 최적화 기법의 적합성 분석 (Analysis of the applicability of parameter estimation methods for a transient storage model)

  • 노효섭;백동해;서일원
    • 한국수자원학회논문집
    • /
    • 제52권10호
    • /
    • pp.681-695
    • /
    • 2019
  • Transient Stroage Model (TSM)은 하천을 본류대와 저장대로 나누어 각각에 대한 오염물의 혼합거동을 해석함으로써 복잡한 하천에 유입된 오염물질 혼합을 이해하는 데에 가장 많이 이용되는 모형 중 하나이다. TSM의 매개변수들은 역산모형을 통해 산정하게 되는데 이는 자연하천에서 추적자실험을 통해 계측된 농도곡선에 가장 잘 맞는 TSM 모의 농도곡선을 찾는 최적화 문제이다. 저장대모형의 매개변수 산정에 관한 선행 연구들에 의해 매개변수를 산정하는 최적화 문제의 비볼록(non-convex) 특성에서 오는 불확실성이 보고되어 왔다. 본 연구에서는 청미천에서 수행된 추적자실험으로부터 취득된 농도곡선을 이용해 최상의 최적화 기법과 목적함수의 조합에 대해 분석하였다. 최적화 문제의 수렴성과 수렴 속도를 모두 만족하는 최적화 조건을 결정하기 위해 SCE-UA의 CCE와 SP-UCI의 MCCE와 같은 진화 알고리즘 기반의 전역 최적화 방법들과 오차 기반 목적함수들을 Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL)을 활용해 비교하였다. 전반적인 변수 산정 결과 여러 EA를 동시에 적용한 SC-SAHEL을 평균 제곱오차를 목적함수로 한 방법이 가장 빠르고 가장 안정적으로 최적해에 수렴하는 것으로 나타났다.

지하저장공동 주변 불연속 암반에서의 가스-물 천이유동해석을 위한 개별균열 유동모델의 개발 및 응용 (Development and Its Application of a Discrete Fracture Flow Model for the Analysis of Gas-Water Transient Flow in Fractured Rock Masses Around Storage Cavern)

  • 나승훈;성원모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.705-712
    • /
    • 2000
  • The fluid generally flows through fractures in crystalline rocks where most of underground storage facilities are constructed because of their low hydraulic conductivities. The fractured rock is better to be conceptualized with a discrete fracture concept, rather continuum approach. In the aspect of fluid flow in underground, the simultaneous flow of groundwater and gas should be considered in the cases of generation and leakage of gas in nuclear waste disposal facilities, air sparging process and soil vapor extraction for eliminating contaminants in soil or rock pore, and pneumatic fracturing for the improvement of permeability of rock mass. For the purpose of appropriate analysis of groundwater-gas flow, this study presents an unsteady-state multi-phase FEM fracture network simulator. Numerical simulation has been also conducted to investigate the hydraulic head distribution and air tightness around Ulsan LPG storage cavern. The recorded hydraulic head at the observation well Y was -5 to -10 m. From the results obtained by the developed model, it shows that the discrete fracture model yielded hydraulic head of -10 m, whereas great discrepancy with the field data was observed in the case of equivalent continuum modeling. The air tightness of individual fractures around cavern was examined according to two different operating pressures and as a result, only several numbers of fractures neighboring the cavern did not satisfy the criteria of air tightness at 882 kPa of cavern pressure. In the meantime, when operating pressure is 710.5 kPa, the most areas did not satisfy air tightness criteria. Finally, in the case of gas leaking from cavern to the surrounding rocks, the resulted hydraulic head and flowing pattern was changed and, therefore, gas was leaked out from the cavern ceiling and groundwater was flowed into the cavern through the walls.

  • PDF

성층화된 축열조의 1차원모델에 대한 해석적인 해 (Analytical Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks)

  • 유호선;박이동
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.42-51
    • /
    • 1995
  • In order to establish a theoretical basis for the analyses of transient behaviors in stratified thermal storage tanks, analytical approaches to an improved one-dimensional model are made. In the present model the storage tank is treated as a finite region with an adiabatic tank exit, whereas it has been considered as a simple semi-infinite region previously. Application of the Laplace transformation and the Inversion theorem to the governing equations makes it possible to obtain an exact infinite-series solution, which is convergent only at sufficiently large time. Accordingly a complementary solution which is available for short times, i.e., the time range of this study is sought by an approximate method. The approximate solution which is rigorously validated through the examination of neglected terms in the solution procedure agrees quite well with the exact one. Moreover, it is simpler to use and more convenient to interpret the physical meaning of the solution. Comparison of the present solution with the previous ones shows relatively large difference near the tank bottom, which results from the more realistic boundary condition adopted in the present model. Some representative results by the approximate solution including effects of the Peclet number on temperature distrbutions are illustrated to show the utility of this study. In consequence, it is expected that the present results based on the improved model replace the foregoing ones as a new theoretical reference for studies of thermal stratification fields.

  • PDF

확률론적 저장대모형을 이용한 하천에서의 물질혼합거동 해석 (Analysis of solute transport in rivers using a stochastic storage model)

  • 김병욱;서일원;권시윤;정성현;윤세훈
    • 한국수자원학회논문집
    • /
    • 제54권5호
    • /
    • pp.335-345
    • /
    • 2021
  • 하천에서의 용존물질의 혼합거동을 신속하게 예측하기 해석하기 위하여 1차원 추적모형이 개발되어 왔다. 그 중 저장대모형(Transient Storage Model, TSM)은 자연하천의 복잡하고 불규칙한 수리·지형적인 특성을 단순하게 반영할 수 있다는 장점때문에 가장 많이 사용되는 1차원 추적모형이다. 하지만 TSM의 정확도는 본류대 및 저장대의 면적, 물질교환계수 등 모형의 매개변수에 의존하며 이들은 직접적으로 측정될 수 없다는 단점이 있다. 또한 TSM은 농도곡선의 꼬리에 나타나는 저장대특성의 형태를 지수함수형태로 반영하는데 이는 실제 추적자실험을 통해 관측되는 꼬리는 형태와 다르다는 평가가 제기되고 있다. 이에 따라 본 연구에서는 1차원 확률론적 저장대모형에 대한 수치모형을 개발하여 자연하천에 적용하고 그 결과를 TSM의 모의결과와 비교하였다. 상기의 모형을 검증하기 위하여 낙동강의 1차 지류 중 하나인 감천의 4.85 km의 구간에서 추적자 실험을 실시하였다. 본 추적자 실험을 통해 측정한 농도곡선과 본 연구에서 제시된 확률론적 저장대모형의 모의 곡선의 꼬리부 멱함수 기울기를 비교해본 결과, 오차율은 평균 0.24으로 나타났는데, 이는 1차원 이송-분산 모형과 TSM로부터의 오차율인 14.03과 1.87에 비해 보다 정확한 값이다. 본 연구 결과, 감천에서의 저장대 특성을 나타내는 하상의 체류시간분포는 지수함수분포보다는 멱함수 분포에 가까운 것으로 밝혀졌다.

제주도 한천유역 지하수 모델개발을 통한 인공함양 평가 (Modeling Artificial Groundwater Recharge in the Hancheon Drainage Area, Jeju island, Korea)

  • 오세형;김용철;구민호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권6호
    • /
    • pp.34-45
    • /
    • 2011
  • For the Hancheon drainage area in Jeju island, a groundwater flow model using Visual MODFLOW was developed to simulate artificial recharge through injection wells installed in the Hancheon reservoir. The model was used to analyze changes of the groundwater level and the water budget due to the artificial recharge. The model assumed that $2{\times}10^6m^3$ of storm water would recharge annually through the injection wells during the rainy season. The transient simulation results showed that the water level rose by 39.6 m at the nearest monitoring well and by 0.26 m at the well located 7 km downstream from the injection wells demonstrating a large extent of the affected area by the artificial recharge. It also shown that, at the time when the recharge ended in the 5th year, the water level increased by 81 m at the artificial reservoir and the radius of influence was about 2.1 km downstream toward the coast. The residence time of recharged groundwater was estimated to be no less than 5 years. The model also illustrated that 15 years of artificial recharge could increase the average linear velocity of groundwater up to 1540 m/yr, which showed 100 m/yr higher than before. Increase of groundwater storage due to artificial recharge was calculated to be $2.4{\times}10^6$ and $4.3{\times}10^6m^3$ at the end of the 5th and 10th years of artificial recharge, respectively. The rate of storage increase was gradually diminished afterwards, and storage increase of $5.0{\times}10^6m^3$ was retained after 15 years of artificial recharge. Conclusively, the artificial recharge system could augment $5.0{\times}10^6m^3$ of additional groundwater resources in the Hancheon area.

Active and Reactive Power Control Model of Superconducting Magnetic Energy Storage (SMES) for the Improvement of Power System Stability

  • Ham, Wan-Kyun;Hwang, Sung-Wook;Kim, Jung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2008
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device. Furthermore, an optimal priority scheme is proposed for the combination of active and reactive power control to be able to stabilize power transient swings.

A study on the estimation of temperature distribution around gas storage cavern

  • Lee Yang;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.238-243
    • /
    • 2003
  • As there are many advantages on underground caverns, such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas will affect the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the cavern. In this study, an analytic solution and a conceptual model that can estimate three-dimensional temperature distribution around the storage cavern are suggested. When calculating the heat transfer within a solid, it is likely to consider the solid as the intersection of two or more infinite or semi-infinite geometries. Therefore heat transfer solution for the solid is expressed by the product of the dimensionless temperatures of the geometries, which are used to form the combined solid. Based on the multi-dimensional transient heat transfer theory, the analytic solution is successfully derived by assuming the cavern shape to be of simplified geometry. Also, a conceptual model is developed by using the analytic solution of this study. By performing numerical experiments of this multi-dimensional model, the temperature distribution of the analytic solution is compared with that of numerical analysis and theoretical solutions.

  • PDF

포접화합물을 이용한 축냉시스템에 대한 이론적 해석 (Theoretical analysis on the cool storage system using clathrates)

  • 정재동;정인성;유호선;이준식
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.343-353
    • /
    • 1997
  • This paper presents a theoretical model for predicting transient behaviors during storage process of the cool storage system using the R141b clathrate. Introduction of the lumped capacitance method along with a brine reservoir having large thermal capacity yields a set of simplified energy equations. Based on the Arrhenius equation and the known experimental findings, the formation rate of clathrate for which the degree of subcooling is properly accounted is newly developed. An effective nondimensionalization of the model equations facilitates the closure of modeling as well as parametric study. Calculated results for a specific case not only simulate a typical pattern of temperautre variation in the tank successfully, but also agree reasonably well with available data. The effect of each characteristic parameter on the system performance is also investigated. It is revealed that the dominant among relevant parameters are the activation energy of reaction, the degree of subcoling and the initial mass fraction of refrigerant. Finally, the uncertainty associated with modeling of the shaft work variation appears to need further studies.

  • PDF