• Title/Summary/Keyword: transgenic mice

Search Result 279, Processing Time 0.024 seconds

The Epithelial-Mesenchymal Transition During Tooth Root Development

  • Kang, Jee-Hae;Park, Jin-Ho;Moon, Yeon-Hee;Moon, Jung-Sun;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.135-141
    • /
    • 2011
  • Hertwig's epithelial root sheath (HERS) consists of bi-layered cells derived from the inner and outer dental epithelia and plays important roles in tooth root formation as well as in the maintenance and regeneration of periodontal tissues. With regards to the fate of HERS, and although previous reports have suggested that this entails the formation of epithelial rests of Malassez, apoptosis or an epithelial-mesenchymal transformation (EMT), it is unclear what changes occur in the epithelial cells in this structure. This study examined whether HERS cells undergo EMT using a keratin-14 (K14) cre:ROSA 26 transgenic reporter mouse. The K14 transgene is expressed by many epithelial tissues, including the oral epithelium and the enamel organ. A distinct K14 expression pattern was found in the continuous HERS bi-layer and the epithelial diaphragm were visualized by detecting the ${\beta}$-galactosidase (lacZ) activity in 1 week postnatal mice. The 2 and 4 week old mice showed a fragmented HERS with cell aggregation along the root surface. However, some of the lacZ-positive dissociated cells along the root surface were not positive for pan-cytokeratin. These results suggest that the K14 transgene is a valuable marker of HERS. In addition, the current data suggest that some of the HERS cells may lose their epithelial properties after fragmentation and subsequently undergo EMT.

PLZF+ Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells

  • Kang, Byung Hyun;Park, Hyo Jin;Park, Hi Jung;Lee, Jae-Il;Park, Seong Hoe;Jung, Kyeong Cheon
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.468-476
    • /
    • 2016
  • PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether $PLZF^+$ innate T cells also affect the development and function of $Foxp3^+$ regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant $PLZF^+$ CD4 T cells and invariant natural killer T cells, respectively, revealed that $Foxp3^+$ T cells in these mice exhibited a $CD103^+$ activated/memorylike phenotype. The frequency of $CD103^+$ regulatory T cells was considerably decreased in $PLZF^+$ cell-deficient $CIITA^{Tg}Plzf^{lu/lu}$ and $BALB/c.CD1d^{-/-}$ mice as well as in an IL-4-deficient background, such as in $CIITA^{Tg}IL-4^{-/-}$ and $BALB/c.IL-4^{-/-}$ mice, indicating that the acquisition of an activated/ memory-like phenotype was dependent on $PLZF^+$ innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-${\beta}$ enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/ memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of $CIITA^{Tg}PIV^{-/-}$ mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that $PLZF^+$ innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production.

Mouse Models of Gastric Carcinogenesis

  • Yu, Sungsook;Yang, Mijeong;Nam, Ki Taek
    • Journal of Gastric Cancer
    • /
    • v.14 no.2
    • /
    • pp.67-86
    • /
    • 2014
  • Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field.

Identification of EphA7 BAC clone containing a long-range dorsal midline-specific enhancer

  • Kim, Yu-Jin;Park, Soo-Chul
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.113-117
    • /
    • 2011
  • Previous studies suggest that EphA7 plays a critical role in neural tube closure or cortical progenitor apoptosis. In this report, enhancer trap assay was used to modify various EphA7 BAC clones and screen a large genomic region spanning 570 kb downstream of the EphA7 gene. We found that the dorsal midline-specific EphA7 enhancer resides on the 457D20 EphA7 BAC clone and is localized to a 35 kb genomic region in between +345.7 kb to +379.8 kb downstream of the EphA7 transcription start site. Identification of the EphA7 BAC clone containing a long-range dorsal midline enhancer may constitute a useful tool for investigating the biological functions of EphA7 in vivo.

Calcium Signal Dependent Cell Death by Presenilin-2 Mutation in PC12 Cells and in Cortical Neuron from Presenilin-2 Mutation Transgenic Mice

  • Lee, Sun-Young;Song, Youn-Sook;Hwang, Dae-Yeun;Kim, Young-Kyu;Yoon, Do-Young;Lim, Jong-Seok;Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.145-145
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-1 (PS-1) and presenilin-2 (PS-2). PS1 and PS2 mutation are known to similar effects on the production of amyloid ${\beta}$ peptide (A${\beta}$) and cause of neuronal cell death in the brain of patient of AD. The importance of the alternation of cellular calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental systems has been demonstrated.(omitted)

  • PDF