The Epithelial-Mesenchymal Transition During Tooth Root Development

  • Kang, Jee-Hae (Dental Science Research Institute, 2nd Stage Brain Korea, School of Dentistry, Chonnam National University) ;
  • Park, Jin-Ho (Dental Science Research Institute, 2nd Stage Brain Korea, School of Dentistry, Chonnam National University) ;
  • Moon, Yeon-Hee (Dental Science Research Institute, 2nd Stage Brain Korea, School of Dentistry, Chonnam National University) ;
  • Moon, Jung-Sun (Dental Science Research Institute, 2nd Stage Brain Korea, School of Dentistry, Chonnam National University) ;
  • Kim, Sun-Hun (Dental Science Research Institute, 2nd Stage Brain Korea, School of Dentistry, Chonnam National University) ;
  • Kim, Min-Seok (Dental Science Research Institute, 2nd Stage Brain Korea, School of Dentistry, Chonnam National University)
  • Received : 2011.06.14
  • Accepted : 2011.09.02
  • Published : 2011.09.30

Abstract

Hertwig's epithelial root sheath (HERS) consists of bi-layered cells derived from the inner and outer dental epithelia and plays important roles in tooth root formation as well as in the maintenance and regeneration of periodontal tissues. With regards to the fate of HERS, and although previous reports have suggested that this entails the formation of epithelial rests of Malassez, apoptosis or an epithelial-mesenchymal transformation (EMT), it is unclear what changes occur in the epithelial cells in this structure. This study examined whether HERS cells undergo EMT using a keratin-14 (K14) cre:ROSA 26 transgenic reporter mouse. The K14 transgene is expressed by many epithelial tissues, including the oral epithelium and the enamel organ. A distinct K14 expression pattern was found in the continuous HERS bi-layer and the epithelial diaphragm were visualized by detecting the ${\beta}$-galactosidase (lacZ) activity in 1 week postnatal mice. The 2 and 4 week old mice showed a fragmented HERS with cell aggregation along the root surface. However, some of the lacZ-positive dissociated cells along the root surface were not positive for pan-cytokeratin. These results suggest that the K14 transgene is a valuable marker of HERS. In addition, the current data suggest that some of the HERS cells may lose their epithelial properties after fragmentation and subsequently undergo EMT.

Keywords

References

  1. Alatli I, Lundmark C, Hammarstrom L. The localization of epithelial root sheath cells during cementum formation in rat molars. J Periodontal Res. 1996;31(6):433-440. https://doi.org/10.1111/j.1600-0765.1996.tb00512.x
  2. Andujar MB, Magloire H, Hartmann DJ, Ville G, Grimaud JA. Early mouse molar root development: cellular changes and distribution of fibronectin, laminin and type-IV collagen. Differentiation. 1985;30(2):111-122. https://doi.org/10.1111/j.1432-0436.1985.tb00522.x
  3. Bosshardt D. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res. 2005;84(5):390-406. https://doi.org/10.1177/154405910508400501
  4. Boyer AS, Erickson CP, Runyan RB. Epithelial-mesenchymal transformation in the embryonic heart is mediated through distinct pertussis toxin-sensitive and TGF beta signal transduction mechanisms. Dev Dyn. 1999;214(1):81-91. https://doi.org/10.1002/(SICI)1097-0177(199901)214:1<81::AID-DVDY8>3.0.CO;2-3
  5. Carmona-Rodriguez B, Alvarez-Perez MA, Narayanan AS, Zeichner-David M, Reyes-Gasga J, Molina-Guarneros J, Garcia- Hernandez AL, Suarez-Franco JL, Chavarria IG, Villarreal- Ramirez E, Arzate H. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts. Biochem Biophys Res Commun. 2007;358(3): 763-769. https://doi.org/10.1016/j.bbrc.2007.04.204
  6. Cerri PS, Katchburian E. Apoptosis in the epithelial cells of the rests of Malassez of the periodontium of rat molars. J Periodontal Res. 2005;40(5):365-372. https://doi.org/10.1111/j.1600-0765.2005.00810.x
  7. Cerri PS, Freymüller E, Katchburian E. Apoptosis in the early developing periodontium of rat molars. Anat Rec. 2000; 258(2):136-144. https://doi.org/10.1002/(SICI)1097-0185(20000201)258:2<136::AID-AR3>3.0.CO;2-L
  8. Chai Y, Ito Y, Han J. TGF-beta signaling and its functional significance in regulating the fate of cranial neural crest cells. Crit Rev Oral Biol Med. 2003;14(2):78-88. https://doi.org/10.1177/154411130301400202
  9. Chai Y, Jiang X, Ito Y, Bringas PJr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000;127(8):1671-1679.
  10. Chung KC, Kim TH, Yang YM, Baek JA, Ko SO, Cho ES. Transactivators for the Odontoblast-specific Gene Targeting. Int J Oral Biol. 2009;34(2):105-113.
  11. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000;127(22):4775-4785.
  12. Diekwisch TG. The developmental biology of cementum. Int J Dev Biol. 2001;45(5-6):695-706.
  13. Duband JL, Monier F, Delannet M, Newgreen D. Epitheliummesenchyme transition during neural crest development. Acta Anat (Basel). 1995;154(1):63-78. https://doi.org/10.1159/000147752
  14. Dudas M, Li WY, Kim J, Yang A, Kaartinen V. Palatal fusion - where do the midline cells go? A review on cleft palate, a major human birth defect. Acta Histochem. 2007;109(1):1-14. https://doi.org/10.1016/j.acthis.2006.05.009
  15. Gao Z, Mackenzie IC, Williams DM, Cruchley AT, Leigh I, Lane EB. Patterns of keratin-expression in rests of Malassez and periapical lesions. J Oral Pathol. 1988;17(4):178-185. https://doi.org/10.1111/j.1600-0714.1988.tb01521.x
  16. Grünert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003;4(8):657-665. https://doi.org/10.1038/nrm1175
  17. Hammarstrom L. Enamel matrix, cementum development and regeneration. J Clin Periodontol. 1997;24(9 Pt 2):658-668. https://doi.org/10.1111/j.1600-051X.1997.tb00247.x
  18. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grünert S. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol. 2002;156(2): 299-313. https://doi.org/10.1083/jcb.200109037
  19. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776- 1784. https://doi.org/10.1172/JCI200320530
  20. Kaneko H, Hashimoto S, Enokiya Y, Ogiuchi H, Shimono M. Cell proliferation and death of Hertwig's epithelial root sheath in the rat. Cell Tissue Res. 1999;298(1):95-103. https://doi.org/10.1007/s004419900061
  21. Kim BI, Na SH, Kim JY, Shin JW, Jue SS. Immunolocalization of Runx2 and Osterix in the Developing Periodontal Tissues of the Mouse. Int J Oral Biol. 2011;36(2):51-57.
  22. Lesot H, Meyer JM, Ruch JV, Weber K, Osborn M. Immunofluorescent localization of vimentin, prekeratin and actin during odontoblast and ameloblast differentiation. Differentiation. 1982;21(2):133-137. https://doi.org/10.1111/j.1432-0436.1982.tb01206.x
  23. Lester KS. The unusual nature of root formation in molar teeth of the laboratory rat. J Ultrastruct Res. 1969;28(5):481-506. https://doi.org/10.1016/S0022-5320(69)80035-3
  24. Lombardi T, Samson J, Mühlhauser J, Fiore-Donno G, Maggiano N, Castellucci M. Expression of intermediate filaments and actins in human dental pulp and embryonic dental papilla. Anat Rec. 1992;234(4):587-592. https://doi.org/10.1002/ar.1092340414
  25. Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig's epithelial root sheath. Dev Dyn. 2006;235(5):1167- 1180. https://doi.org/10.1002/dvdy.20674
  26. MacNeil RL, Thomas HF. Development of the murine periodontium. I. Role of basement membrane in formation of a mineralized tissue on the developing root dentin surface. J Periodontol. 1993;64(2):95-102. https://doi.org/10.1902/jop.1993.64.2.95
  27. Onishi T, Ooshima T, Sobue S, Tabata MJ, Maeda T, Kurisu K, Wakisaka S. Immunohistochemical localization of calbindin D28k during root formation of rat molar teeth. Cell Tissue Res. 1999;297(3):503-512. https://doi.org/10.1007/s004410051377
  28. Owens W. Canadian Northland: the loneliness of the long distance Eskimo nurse. Nurs Mirror. 1979;149(22):38-39.
  29. Rincon JC, Xiao Y, Young WG, Bartold PM. Production of osteopontin by cultured porcine epithelial cell rests of Malassez. J Periodontal Res. 2005;40(5):417-26. https://doi.org/10.1111/j.1600-0765.2005.00823.x
  30. Sakabe M, Matsui H, Sakata H, Ando K, Yamagishi T, Nakajima Y. Understanding heart development and congenital heart defects through developmental biology: a segmental approach. Congenit Anom (Kyoto). 2005;45(4):107-118. https://doi.org/10.1111/j.1741-4520.2005.00079.x
  31. Sanders EJ, Prasad S. Invasion of a basement membrane matrix by chick embryo primitive streak cells in vitro. J Cell Sci. 1989;92(Pt 3):497-504.
  32. Smith BE, Carroll B. Maxillary lateral incisor with two developmental grooves. Oral Surg Oral Med Oral Pathol. 1990;70(4):523-525.
  33. Solursh M, Fisher M, Meier S, Singley CT. The role of extracellular matrix in the formation of the sclerotome. J Embryol Exp Morphol. 1979;54:75-98.
  34. Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21(1):70-1. https://doi.org/10.1038/5007
  35. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442-454. https://doi.org/10.1038/nrc822
  36. Thomas HF. Root formation. Int J Dev Biol. 1995;39(1):231- 237.
  37. Thomas HF, Kollar EJ. Differentiation of odontoblasts in grafted recombinants of murine epithelial root sheath and dental mesenchyme. Arch Oral Biol. 1989; 34(1):27-35. https://doi.org/10.1016/0003-9969(89)90043-5
  38. Weston JA. Neural crest cell development. Prog Clin Biol Res. 1982;85 Pt B:359-379.
  39. Wetzels RH, Holland R, van Haelst UJ, Lane EB, Leigh IM, Ramaekers FC. Detection of basement membrane components and basal cell keratin 14 in noninvasive and invasive carcinomas of the breast. Am J Pathol. 1989;134(3):571-579.
  40. Yamamoto H, Cho SW, Kim EJ, Kim JY, Fujiwara N, Jung HS. Developmental properties of the Hertwig's epithelial root sheath in mice. J Dent Res. 2004;83(9):688-692. https://doi.org/10.1177/154405910408300906
  41. Zavadil J, Böttinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005; 24(37):5764-5774. https://doi.org/10.1038/sj.onc.1208927
  42. Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen LS, Arzate H, Bringas PJr. Role of Hertwig's epithelial root sheath cells in tooth root development. Dev Dyn. 2003;228(4):651- 63. https://doi.org/10.1002/dvdy.10404