• Title/Summary/Keyword: transgenic embryo

Search Result 195, Processing Time 0.019 seconds

Production of Transgenic Animals derived from In Vitro Fertilized Eggs cryopreserved by Ultrarapid Freezing (초급속 동결보존한 체외수정란 유래의 형질전환 마우스 생산효율성 검토)

  • Kim, Hyun;Choe, Changyong;Seong, Hwan-Hoo
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.207-211
    • /
    • 2015
  • Many pronuclear stage eggs were used to generate transgenic mice (Tg) by microinjection. In this study, we used in vitro fertilized mouse eggs, followed by ultrarapid freezing to establish a simple procedure for production of Tg mice. We produced in vitro fertilized mouse eggs and cryopreserved them by ultrarapid freezing method. A total of 139 cryopreserved-thawed pronuclear eggs, of which 101 (72.6%) were survived following microinjection of chicken ${\beta}-actin$ promoter-driven firefly improved luciferase cDNA (${\beta}-act/luc^+$) and were transferred into 5 recipients. All recipients became pregnant and gave birth to a total of 15 (14.8%) pups. As a control, same DNA construction (${\beta}-act/luc^+$) was also injected into 450 in vitro fertilized eggs, of which 338 (75.1%) were survived and then were transferred into 14 recipients. Eleven (78%) mice became pregnant and littered a total of 54 (19.1%) pups. Southern blotting analysis of Tg mice indicated that one (1/15, 6.6%) and three (3/54, 5.5%) transgenic mice were production from cryopreserved and in vitro fertilized eggs, respectively. All Tg mice produced from both eggs showed the expression of improved luciferase gene. These results indicated that efficiency of produced of Tg mice from cryopreserved eggs was comparable to that from in vitro fertilized eggs. Furthermore, it is suggested that microinjection of transgene into in vitro fertilized eggs cryopreserved by ultrarapid freezing is an easy and conveniently method for production of Tg mice.

Development of Reversing the Usual Order of Somatic Cell Nuclear Transfer in Mice

  • Kang, Ho-In;Sung, Ji-Hye;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.26 no.1
    • /
    • pp.85-89
    • /
    • 2011
  • Somatic cell nuclear transfer (SCNT) is a useful tool for reproducing genetically identical animals or producing transgenic animals. Many reports have demonstrated that the efficiency of animal cloning by SCNT requires reprogramming of the somatic nucleus to a totipotent like-state. The SCNT-related reprogramming might mimic the natural reprogramming process that occurs during normal mammalian development. However, recent evidence indicates that the reprogramming event by SCNT is incomplete. In this study, the traditional SCNT procedure (TNT) was modified by injecting donor nuclei into recipient cytoplasm prior to the enucleation process to expose the donor nucleus before removing the karyoplast containing the chromosomes of the oocytes which might possess additional reprogramming factors, and this modified technique was named as reversing the usual order of SCNT (RONT). Other procedures including activation and in vitro culture were the same as TNT. Contrary to expectations, the rate of blastocyst development was not different significantly between RONT and TNT (8.6% and 7.9%, respectively). However, duration of micromanipulation performed by the same technician and equipments was remarkably reduced because the ruptured oocytes after nuclear injection were excluded from the enucleation process. This study suggests that RONT, a simplified SCNT protocol, shortens the duration of SCNT procedure and this less time-costing protocol may enable the researchers to perform murine SCNT easier.

In vitro Propagation of Transgenic Ginsengs Introduced with Ferritin Light Heavy Chain Gene through Single Embryo Culture (Ferritin Light Heavy Chain 유전자가 도입된 인삼형질전환체의 단일배발생을 통한 식물체의 기내증식)

  • 윤영상;김종학;김무성;양덕춘
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.161-168
    • /
    • 2004
  • Optimal regeneration conditions of ginseng transformants were studied. It has been known that Ferritin Light Heavy Chain (FLHC) gene remove the several heavy metal by combination, store and transport. To obtain the ginseng tolerant to heavy metal, binary vector was introduced in Agrobacterium by tri-parental mating and then Agrobacterium tumefaciens MP90/FLHC was selected on the AB media and MS media containing kanamycin. Explants were co-cultured with Agrobacterium tumefaciens MP90/FLHC, which contained NPT II as a selectable marker, tadpole ferritin heavy chain (FLHC) gene and human ferritin light chain gene and then a number of embryos were induced. The induced embryo transferred to shooting media consisting of MS medium supplemented with GA 10 mg/L. As a result of examination that induced the normal growth of transfomants, transformants showed the equivalent growth in both root and shoot on the media containing the 1/3 MS.

Temporal Expression of RNA Polymerase II in Porcine Oocytes and Embryos

  • Oqani, Reza;Lee, Min Gu;Tao, Lin;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.237-241
    • /
    • 2012
  • Embryonic genome activation (EGA) is the first major transition that occurs after fertilization, and entails a dramatic reprogramming of gene expression that is essential for continued development. Although it has been suggested that EGA in porcine embryos starts at the four-cell stage, recent evidence indicates that EGA may commence even earlier; however, the molecular details of EGA remain incompletely understood. The RNA polymerase II of eukaryotes transcribes mRNAs and most small nuclear RNAs. The largest subunit of RNA polymerase II can become phosphorylated in the C-terminal domain. The unphosphorylated form of the RNA polymerase II largest subunit C-terminal domain (IIa) plays a role in initiation of transcription, and the phosphorylated form (IIo) is required for transcriptional elongation and mRNA splicing. In the present study, we explored the nuclear translocation, nuclear localization, and phosphorylation dynamics of the RNA polymerase II C-terminal domain in immature pig oocytes, mature oocytes, two-, four-, and eight-cell embryos, and the morula and blastocyst. To this end, we used antibodies specific for the IIa and IIo forms of RNA polymerase II to stain the proteins. Unphosphorylated RNA polymerase II stained strongly in the nuclei of germinal vesicle oocytes, whereas the phosphorylated form of the enzyme was confined to the chromatin of prophase I oocytes. After fertilization, both unphosphorylated and phosphorylated RNA polymerase II began to accumulate in the nuclei of early stage one-cell embryos, and this pattern was maintained through to the blastocyst stage. The results suggest that both porcine oocytes and early embryos are transcriptionally competent, and that transcription of embryonic genes during the first three cell cycles parallels expression of phosphorylated RNA polymerase II.

Production of the BmCecB1 antimicrobial peptide in transgenic silkworm

  • Kim, Seong Wan;Kim, Seong Ryul;Park, Seung Won;Choi, Kwang Ho;Goo, Tae Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.85-89
    • /
    • 2015
  • This peptide has antibacterial activity against several Gram-positive and Gram-negative bacteria. Bombyx mori cecropinB1(BmCecB1) is antimicrobial peptides from Bombyx mori and belongs to cecropin family. Antimicrobial peptides are important components of the innate immune systems in all living organism. To produce the BmCecB1 antimicrobial peptide, we constructed transgenic silkworm that expressed BmCecB1 gene under the control BmA3 promoter using piggyBac vector. The use of the 3xP3-driven EGFP cDNA as a marker allowed us to rapidly distinguish transgenic silkworm. Mixtures of the donor vector and helper vector were micro-injected into 600 eggs of bivoltin silkworms, Baegokjam. In total, 49 larvae (G0) were hatched and allowed to develop into moths. The resulting G1 generation consisted of 22 broods, and we selected 2 broods containing at least 1 EGFP-positive embryo. The rate of successful transgenesis for the G1 broods was 9%. We identified 9 EGFP-positive G1 moths and these were backcrossed with wild-type moths. With the aim of identifying a BmCecB1 as antimicrobial peptide, we investigated the Radical diffusion Assay (RDA) and then demonstrated that BmCecB1 possesses high antibacterial activities against Gram-negative bacteria.

A Study of the Liposome-Mediated Transgenic Chicken Production (리포좀을 이용한 형질전환 닭 생산에 대한 연구)

  • Byun S. J.;Park C.;Yang B. S.;Kim T. Y.;Sohn S. H.;Kim S. H.;Jeon I. S.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.4
    • /
    • pp.293-298
    • /
    • 2004
  • Microinjection of DNA is a general method for generating transgenic animals, but the rate of transgenesis in chickens is very low. So it was carried out to investigate the efficiency of liposome-mediated gene transfer in stage one cell of chicken embryo with GFP expression vector. In order to determine efficiency and duration of the introduced foreign gene, it was microinjected DNA with liposome or naked DNA into the germinal disc of stage one cell or stage-X chicken embryo. Analysis of reporter gene expression in day-4 embryos showed that GFP expression was observed only in the liposome-mediate embryo groups and detectable up to day-8 embryos. The results suggest that stable integration of the introduced gene using liposome is a rare event. Nevertheless the liposome-mediated gene transfer may be a useful method to transfer a foreign gene into the stage one cell of chicken embryos.

Production of Bovine Transgenic Somatic Cell Nuclear Transfer Embryos by Demecolcine-assisted Enucleation (Demecolcine-assisted Enucleation에 의한 소 형질 전환 핵이식란 생산)

  • Cho J.K.;Son J.M.;Lee D.S.;Yoon K.Y.;Shin S.T.
    • Journal of Embryo Transfer
    • /
    • v.21 no.2
    • /
    • pp.85-93
    • /
    • 2006
  • 본 연구는 소 형질 전환 체세포 핵이식에서 용이한 탈핵을 위해 demecolcine을 이용할 시 탈핵율과 핵이식란의 발육능을 높이기 위한 최적의 조건을 알아보고자 실시되었다. 도축장 유래 미성숙 난자를 18시간 체외성숙 후 제1극체가 확인된 성숙 난자를 0.1, 0.2, 0.4 및 0.8 ug/ml의 demecolcine이 첨가된 배지에서 1시간 더 처리한 다음 세포막이 돌출되어 있는 난자를 체세포 핵이식에 공여하여 각 군간 배반포로의 발육능을 비교하였다. Demecolcine 처리 후 핵이 포함된 셰포막의 protrusion rates를 각 군간 비교한 결과 0.2, 0.4 및 0.8 ug/ml 군에서 0.1 ug/ml 군보다 유의적으로 높았으며 (82.8, 86.2, 90.4 vs. 70.1%), conventional blind 방법과 비교한 결과 demecolcine를 이용한 군에서 유의적으로 높은 탈핵율을 보였다(75.3 vs. 96.2%; p<0.05). 체세포 핵이식란의 발육능 비교에서는 0.1 및 0.2ug/ml 군에서 대조군과 함께 유의적으로 높은 분할율 및 배반포로의 발육능을 보였다(p<0.05). 결론적으로 소 형질전환 체세포 핵이식을 위한 탈핵시 높은 탈핵율과 배반포로의 발육율을 얻을 수 있는 demecolcine의 적정농도는 0.2ug/ml이라고 사료된다.

Production of Transgenic Maize (Zea mays L.) Using Agrobacterium tumefaciens-Mediated Transformation (Agrobacterium tumefaciens 공동배양법을 이용한 옥수수 형질전환체 생산)

  • Cho Mi-Ae;Park Yun-Ok;Kim Jin-Suck;Park Ki-Jin;Min Hwang-Ki;Liu Jang-Ryol;Clemente Tom;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated immature embryo transformation was used to produce transgenic maize. Immature embryo of Hi II genotype were co-cultivated with strains Agrobacterium tumefaciens (C58C1) containing the binary vectors (pPTN290) carrying with Ubiquitin promoter-GUS gene as reporter gene and NOS promoter-nptll gene conferring resistance to paromomycin as selective agent. Seven embryogenic callus lines transformed showed the resistance in paromomycin antibiotics. Histochemical GUS assay showed that 7 individual lines transformed with the GUS gene were positive response among the transformants. Southern blot analysis revealed that the nptll gene segregated and expressed in their progeny.

RAV1 Negatively Regulates Seed Development by Directly Repressing MINI3 and IKU2 in Arabidopsis

  • Shin, Hyun-young;Nam, Kyoung Hee
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1072-1080
    • /
    • 2018
  • A plant-specific B3 domain and AP2 domain-containing transcription factor, RAV1 acts as a negative regulator of growth in many plant species and its transcription was down-regulated by BR and ABA. In this study, we found that RAV1-overexpressing transgenic plants showed abnormally developed ovules, resulting in reduced seed size, weight, and number in a silique. Interestingly, the endogenous expression of RAV1 fluctuated during seed development; it remained low during the early stage of seed development and sharply increased in the seed maturation stage. In plants, seed development is a complex process that requires coordinated growth of the embryo, endosperm, and maternal integuments. Among many genes that are associated with endosperm proliferation and embryo development, three genes consisting of SHB1, MINI3, and IKU2 form a small unit positively regulating this process, and their expression was regulated by BR and ABA. Using the floral stage-specific RNAs, we found that the expression of MINI3 and IKU2, the two downstream genes of the SHB1-MINI3-IKU2 cascade in the seed development pathway, were particularly reduced in the RAV1-overexpressing transgenic plants. We further determined that RAV1 directly binds to the promoter of MINI3 and IKU2, resulting in their repression. Direct treatment with brassinolide (BL) improved seed development of RAV1-overexpressing plants, but treatment with ABA severely worsened it. Overall, these results suggest that RAV1 is an additional negative player in the early stages of seed development, during which ABA and BR signaling are coordinated.

Agrobacterium-mediated Transformation of Eleutherococcus sessiliflorus using Embryogenic Calli and the Regeneration of Plants (오갈피(Eleutherococcus sessiliflorus)의 배형성 세포를 이용한 고빈도 형질전환 및 재분화)

  • Jeong, Jae-Hun;Han, Seong-Soo;Choi, Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.233-239
    • /
    • 2003
  • We have developed a reliable and high-frequency genetic transformation and regeneration system via somatic embryogensis of Eleutherococcus sessiliflorus. Embryogenic callus obtained from seed were co- cultivated with Agrobacterium tumefaciens strain EHA101/pIG121Hm harboring genes for intron-$\beta$-glucoronidase(GUS), kanamycin and hygromycin resistance. Following co-cultivation, two types of samples(fine embrogenic calli and early globular embryo clusters) were cultivated on Murashige and Skoog(MS) medium containing 1 mg/L2.4-D for 3day in dark. Transient expression of GUS gene was found to be higher in the early globular embryo clusters than in the embryogenic calli. Also, co-cultivated period affected expression of GUS gene; the best result was obtained when globular embryo clusters were co-cultivated with Agrobacterium for 3 days. Subsequently, this callus transferred to selective MS medium containing 1mg/L2.4-D, 50mg/L kanamycin or/and 30mg/L hygromycin and 300mg/L cefortaxime. These embryogenic calls were subcultured to the same selection medium at every 2 weeks intervals. Approximately 24.5% of the early globular embryos co-cultivated with Agrobacterium for 3days produced kanamycin or/and hygromycin-resistant calli. Transgenic somatic embryos were converted into plantlets in half strength MS medium supplemented with 3mg/L GA$_3$ kanamycin and were confirmed by GUS histochemical assay and polymerase chain reaction analysis. Genomic Southem blot hybridization confirmed the incorporation of NPT II gene into the host genome.