• Title/Summary/Keyword: transgenic crop

Search Result 256, Processing Time 0.033 seconds

Variation of Amylose Content Using dsRNAi Vector by Targeting 3'-UTR Region of GBSSI Gene in Rice (GBSSI 유전자 3'UTR 영역의 발현 억제 dsRNAi 벡터를 이용한 아밀로스함량 조절 벼 개발)

  • Park, Hyang-Mi;Choi, Man-Soo;Chun, Areum;Lee, Jeung-Heui;Kim, Myeong-Ki;Kim, Yeon-Gyu;Shin, Dong-Bum;Lee, Jang-Yong;Kim, Yul-Ho
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.515-524
    • /
    • 2010
  • The amylose content of starch is a major factor in the texture of cooked cereal grains. Therefore, down-regulation of amylose synthesis is one of the alternative method to improve eating quality of rice. We developed transgenic rice plants designed to suppress granule-bound starch synthase I(GBSSI) gene using RNA interference(RNAi) technology. Transgenic plants with RNAi vector containing the 3'-UTR region of GBSSI showed a lower amylose content in rice endosperm than that of wild-type. The range of amylose content was 5.9~9.0% in the transgenic plants, whereas that of wild-type was 17.7~18.0%. Transgenic rices showed the decrease of short chain and the increase of long chain by analyzing chain length distribution of amylopectin in the endosperm. In the SEM micrographs, we found that compound starch granules in whole grains of the wild-type rice were readily split during fracturing, while the starch granules in RNAi-transgenic lines showed small voluminous, non-angular rounded bodies.

Overexpression of Ice Recrystallization Inhibition Protein (HvIRIP) from Barley Enhances Cold Tolerance in Transgenic rapeseed plants (HvIRIP 과발현 유채 형질전환체의 내한성 증진)

  • Roh, Kyung Hee;Park, Jong-Sug;Kang, Han-Chul;Kim, Jong-Bum;Jang, Young-Suk;Kim, Kwang-Soo;Yi, Hankuil
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.325-332
    • /
    • 2015
  • Rapeseed (Brassica napus) is now the second largest oilseed crop after soybean. Cold temperature tolerance is an important agronomic trait in winter rapeseed that determines the plant's ability to control below freezing temperatures. To improve cold tolerance of rapeseed plants, an expression vector containing an Barley Ice recrystallization inhibition protein (HvIRIP) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into rapeseed plants. Transgenic expression of HvIRIP was proved by southern- and northern-blot analyses. The level of freezing tolerance of transgenic $T_3$ plants was found to be significantly greater than that of wild-type rapeseed plants by freezing assay. Proline accumulation during cold stress was also highly induced in the transgenic rapeseed plants. The transgenic plants exhibited considerable tolerance against oxidative damage induced by cold stress. Our results indicated that heterologous HvIRIP expression in transgenic rapeseed plants may induce several oxidative-stress responsive genes to protect from cold stress.

Impact of Sulphur and Nitrogen Application on Seed and Xanthotoxin Yield in Ammi majus L.

  • Ahmad, Saif;Jamal, Arshad;Fazili, Inayat Saleem;Alam, Tanweer;Khan, Mather Ali;Kamaluddin, Kamaluddin;Iqbal, Mohd;Abdin, Malik Zainul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.153-161
    • /
    • 2007
  • Field experiments were conducted to determine the physiological and biochemical basis of the interactive effect of sulphur (S) and nitrogen (N) application on seed and xanthotoxin yield of Ammi majus L. Six treatments were tested ($T_1$ = control-without manure and fertilizers, $T_2$ = manure @ 9 kg $plot^{-1}-10\;t\;ha^{-1},\;T_3=A_0N_{50}K_{25}P_{25},\;T_4=S_{40}N_{50}K_{25}P_{25},\;T_5=S_{40}N_{100}K_{25}P_{25}\;T_6=S_{20+20}N_{50+50}K_{25}P_{25})$). Nitrate reductase (NR) activity and ATP-sulphurylase activity in the leaves were measured at various phonological stages, as the two enzymes catalyze rate-limiting steps of the assimilatory pathways of nitrate and sulphate, respectively. The activities of these two enzymes were strongly correlated with seed and xanthotoxin yield. The highest nitrate reductase activity, ATP-sulphurylase activity and xanthotoxin yield were achieved with the treatment $T_4$. Any variation from this treatment decreased the activity of these enzymes, resulting in a reduction of the seed and xanthotoxin yield in Ammi majus L. The higher seed and xanthotoxin yield achieved in Ammi majus L. at treatment $T_4$ could be due to optimization of leaf soluble protein and photosynthetic rate, as these parameters are Influenced by S and N assimilation.

Genetic improvement of potato plants

  • Suharsono, Sony
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.12-12
    • /
    • 2017
  • Genetic improvement in potato can be carried out through several approaches, as sexual crosses, somatic hybridization, mutation and genetic engineering. Although the approach is different, but the goal is the same, to get a superior cultivar. Mutation and genetic engineering are very interesting methods for genetic improvement of potato plants. Mutation by gamma-ray irradiation have been performed to get some new potato cultivars which are more resistant to disease and have higher productivity. We have carried out a mutation of some potato cultivars and obtained some excellent clones to be potentially released as new superior cultivars. By the mutation method, we have released one potato cultivar for the French fries industry, and we registered one cultivar of potato for chips, and two cultivar for vegetable potatoes. Actually we are doing multi-location trial for three clones to be released as new cultivars. Through genetic engineering, several genes have been introduced into the potato plant, and we obtained several clones of transgenic potato plants. Transgenic potato plants containing FBPase gene encoding for fructose bisphosphatase, have a higher rate of photosynthesis and higher tuber productivity than non-transgenic plants. This result suggests that FBPase plays an important role in increasing the rate of photosynthesis and potato tuber productivity. Some transgenic potatoes containing the Hd3a gene are currently being evaluated for their productivity. Over expression of the Hd3a gene is expected to increase tuber productivity and induce flowering in potatoes. Transgenic potato plants containing MmPMA gene encoding for plasma membrane ATPse are more tolerant to low pH than non-transgenic plants, indicating that plasma membrane ATPase plays an important role in the potato plant tolerance to low pH stress. Transgenic potato plants containing c-lysozyme genes, are highly tolerant of bacterial wilt diseases caused by Ralstonia solanacearum and bacterial soft rot disease caused by Pectobacterium carotovorum. Expression of c-lyzozyme gene plays an important role in increasing the resistance of potato plants to bacterial diseases.

  • PDF

Screening methods for drought and salinity tolerance with transgenic rice seedlings

  • Song, Jae-Young;Song, Seon-Kyeong;Yu, Dal-A;Kim, Me-Sun;Kang, Kwon Kyoo;Cho, Yong-Gu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.165-165
    • /
    • 2017
  • Abiotic stress is one of the major serious limiting factors in rice (Oryza sativa) and caused rice production losses. It is important to precisely screen valuable genetic resources for improving stress tolerance and understanding tolerance mechanism to abiotic stresses. Because there are differences of experiment designs for screening of tolerant plant in several studies related to abiotic stress, this study has performed to provide the rapid and efficiency screening method for selection of tolerance rice to drought and salinity stresses. Two week-old rice seedlings that reached about three leaf stage were treated with drought and salinity stresses and examined tolerant levels with tolerant and susceptible control varieties, and transgenic plants. To determine the optimum concentration for the selection of drought and salinity condition, tolerant, susceptible and wild-type plants were grown under three soil moisture contents (5, 10 and 20% water contents) and three NaCl concentrations (100, 200 and 250 mM) for 10 days at seedling stage. 200 mM NaCl concentration and 5% moisture content soil were determined as the optimum conditions, respectively. The described methodologies in this study are simple and efficiency and might help the selection of drought and salinity tolerance plants at the 3,4-leaf-seedling stage.

  • PDF

Development of Marker-free Transgenic Rice Expressing the Wheat Storage Protein, Glu-1Dy10, for Increasing Quality Processing of Bread and Noodles (빵과 면의 가공적성 증진을 위한 밀 저장단백질 Glu-1Dy10을 발현하는 마커프리 형질전환 벼 개발)

  • Park, Soo-Kwon;Shin, DongJin;Hwang, Woon-Ha;Hur, Yeon-Jae;Kim, Tae-Heon;Oh, Se-Yun;Cho, Jun-Hyun;Han, Sang-Ik;Lee, Seung-Sik;Nam, Min-Hee;Park, Dong-Soo
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.618-625
    • /
    • 2014
  • Rice flour is used in many food products. However, dough made from rice lacks extensibility and elasticity, making it less suitable than wheat for many food products such as bread and noodles. The high-molecular weight glutenin subunits (HMW-GS) of wheat play a crucial role in determining the processing properties of the wheat grain. This paper describes the development of marker-free transgenic rice plants expressing a wheat Glu-Dy10 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' using Agrobacterium-mediated co-transformation. Two expression cassettes, consisting of separate DNA fragments containing Glu-1Dy10 and hygromycin phosphotransferase II (HPTII) resistance genes, were introduced separately into Agrobacterium tumefaciens EHA105 for co-infection. Each EHA105 strain harboring Glu-1Dy10 or HPTII was infected into rice calli at a 3: 1 ratio of Glu-1Bx7 and HPTII. Among 290 hygromycin-resistant $T_0$ plants, we obtained 29 transgenic lines with both the Glu-1Dy10 and HPTII genes inserted into the rice genome. We reconfirmed the integration of the Glu-1Dy10 gene into the rice genome by Southern blot analysis. Transcripts and proteins of the Glu-1Dy10 in transgenic rice seeds were examined by semi-quantitative RT-PCR and Western blot analysis. The marker-free plants containing only the Glu-1Dy10 gene were successfully screened in the $T_1$ generation.

A High-Efficiency Direct Somatic Embryogenesis System for Strawberry(Fragaria x ananassa Duch.) Cultivar Chandler

  • Husaini, Amjad M.;Aquil, Samina;Bhat, Mukhtar;Qadri, Tabassum;Kamaluddin, Kamaluddin;Abdin, Malik Zainul
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.107-110
    • /
    • 2008
  • A high-efficiency, reproducible somatic embryogenesis system for strawberry cultivar Chandler was developed. Thirty-one somatic embryos per explant(max no.) were recorded in leaf discs which were cultured on medium containing MS salts+$B_5$ vitamins+2% glucose+4.0 mg $1^{-1}$TDZ(Thidiazuron) and incubated at $10{\pm}1^{\circ}C$ under darkness for one week followed by three weeks under 16-h photoperiod. The scanning electron microscopic(SEM) ontogeny revealed the normal development of somatic embryos from globular to heart-shaped and dissection microscopy from torpedo-shaped to cotyledonary-stage embryos. The maximum germination percentage of 48% could be obtained on MS medium containing kinetin(1.0 mg $1^{-1}$) and the maximum survival percentage(79%) of plantlets after four weeks was found to be in the mixture of vermiculite, peatmoss, and soilrite(1:1:1).

  • PDF

Field Performance and Morphological Characterization of Transgenic Codonopsis lanceolata Expressing $\gamma-TMT$ Gene.

  • Ghimire, Bimal Kumar;Li, Cheng Hao;Kil, Hyun-Young;Kim, Na-Young;Lim, Jung-Dae;Kim, Jae-Kwang;Kim, Myong-Jo;Chung, Ill-Min;Lee, Sun-Joo;Eom, Seok-Hyun;Cho, Dong-Ha;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.5
    • /
    • pp.339-345
    • /
    • 2007
  • Field performance and morphological characterization was conducted on seven transgenic lines of Codonopsis lanceolata expressing ${\gamma}-TMT$ gene. The shoots were obtained from leaf explants after co-cultivation with Agrobacterium tume-faciens strain LBA 4404 harboring a binary vector pYBI 121 that carried genes encoding ${\gamma}-Tocopherol$ methyltransferase gene (${\gamma}-TMT$) and a neomycin phosphotransferase II gene (npt II) for kanamycin resistance. The transgenic plants were transferred to a green house for acclimation. Integration of T-DNA into the $T_0\;and\;T_1$ generation of transgenic Codonopsis lanceolata genome was confirmed by the polymerase chain reaction and southern blot analysis. The progenies of transgenic plants showed phenotypic differences within the different lines and with relative to control plants. When grown in field, the transgenic plants in general exhibited increased fertility, significant improvement in the shoot weight, root weight, shoot height and rachis length with relation to the control plants. However, all seven independently derived transgenic lines produced normal flower with respect to its shape, size, color and seeds number at its maturity. Indicating that the addition of a selectable marker gene in the plant genome does not effect on seed germination and agronomic performance of transgenic Codonopsis lanceolata. $T_1$ progenies of these plants were obtained and evaluated together with control plant in a field experiment. Overall, the agronomic performance of $T_1$ progenies of transgenic Codonopsis lanceolata showed superior to that of the seed derived non-transgenic plant. In this study, we report on the morphological variation and agronomic performance of transgenic Codonopsis lanceolata developed by Agrobacterium transformation.