• Title/Summary/Keyword: transforming of control space

Search Result 14, Processing Time 0.022 seconds

On the Transforming of Control Space by Manipulator Jacobian

  • Fateh, Mohammad Mehdi;Farhangfard, Hasan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.101-108
    • /
    • 2008
  • The transposed Jacobian is proposed to transform the control space from task space to joint space, in this paper. Instead of inverse Jacobian, the transposed Jacobian is preferred to avoid singularity problem, short real time calculations and its generality to apply for rectangular Jacobian. On-line Jacobian identification is proposed to cancel parametric errors produced by D-H parameters of manipulator. To identify Jacobian, the joint angles and the end-effector position are measured when tracking a desired trajectory in task space. Stability of control system is analyzed. The control system is simulated for position control of a two-link manipulator driven by permanent magnet dc motors. Simulation results are shown to compare the roles of inverse Jacobian and transposed Jacobian for transforming the control space.

Hierarchical design resolution control scheme for the systematic generation of optimal candidate designs having various topological complexities (위상복잡도 조절을 위한 설계 해상도 계층적 제어 기법)

  • Seo, Jeong-Hun;Kim, Yoon-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1310-1315
    • /
    • 2003
  • In many practical engineering design problems, there are some design and manufacturing considerations that are difficult or infeasible to express in terms of an objective function or a constraint. In this situation, a set of optimal candidate designs having different topological complexities, not just a single optimal design, is preferred. To generate systematically such design candidates, we propose a hierarchical multiscale design resolution control scheme. In order to adjust its topological complexity by choosing a different starting resolution level in the hierarchical design space, we propose to employ a general M-band wavelet transform in transforming the original design space into the multiscale design space.

  • PDF

Optimal Learning Control Combined with Quality Inferential Control for Batch and Semi-batch Processes

  • Chin, In-Sik;Lee, Kwang-Soon;Park, Jinhoon;Lee, Jay H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.57-60
    • /
    • 1999
  • An optimal control technique designed for simultaneous tracking and quality control for batch processes. The proposed technique is designed by transforming quadratic-criterion based iterative learning control(Q-ILC) into linear quadratic control problem. For real-time quality inferential control, the quality is modeled by linear combination of control input around target qualify and then the relationship between quality and control input can be transformed into time-varying linear state space model. With this state space model, the real-time quality inferential control can be incorporated to LQ control Problem. As a consequence, both the quality variable as well as other controlled variables can progressively reduce their control error as the batch number increases while rejecting real-time disturbances, and finally reach the best achievable states dictated by a quadratic criterion even in case that there is significant model error Also the computational burden is much reduced since the most computation is calculated in off-line. The Proposed control technique is applied to a semi-batch reactor model where series-parallelreactions take place.

  • PDF

Multiple Plane Area Detection Using Self Organizing Map (자기 조직화 지도를 이용한 다중 평면영역 검출)

  • Kim, Jeong-Hyun;Teng, Zhu;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.

Development of Moving Objects Monitoring and Transforming Personal Robot System Based on Remote Controls (원격제어기반 이동체 감지 및 변형 퍼스널 로봇시스템 설계 및 구현)

  • Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.159-165
    • /
    • 2010
  • The moving object monitoring and transforming personal robot system based on remote controls is designed and implemented, and the performance of the system is analyzed in this paper. The major considering factors in the system design are such as 1) the control scheme design (button based and the remote control schemes); 2) the operation modes design (wheel driving mode/pedestrian mode/auto driving mode/observation mode); 3) the remote control function design; 4) the design of the monitoring function of the changes in neighbor environments; 5) the design of the detection of obstruction. From the experiments, it is assured that the developed personal robot can walk to the grounds that covered with doorsill or electric wires in indoors by control the leg articulations, and can escape from the obstruction using three infrared sensors in the 30cm*30cm obstruction styled space under the auto driving mode.

Analysis on the Computational complexities of Motion Editing for Graphic Animation (효율적인 애니메이션을 위한 모션 에디팅 방법의 계산량분석에 관한 연구)

  • Lee, Jihong;Kim, Insik;Kim, Sungsu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.28-36
    • /
    • 2002
  • Regarding efficient development of computer graphic animations, lots of techniques for editing or transforming existing motion data have been developed. Basically, the motion transformation techniques follow optimization process. To make the animation be natural, almost all the techniques utilize kinematics and dynamics in constructing constraints for the optimization. Since the kinematic and dynamic structures of virtual characters to be animated are very complex, the most time-consuming part is known to the optimization process. In order to suggest some guide lines to engineers involved in the motion transformation, in this paper, we analyze the computational complexities for typical motion transformation in quantitative manner as well as the possibility for parallel computation.

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Speed Control of DC Motor for Roller Type Seeder (롤러형 파종기 구동용 직류모터의 회전속도 제어)

  • 이중용;김유용;박상래
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.351-358
    • /
    • 2000
  • This study was conducted to develop a speed control system of a DC motor which drove a barley seeder mounted on a combine harvester. Barley seeder mounted on a combine has been known to reduce labor and cost of barley cultivation. However, development of the seeder has been unsuccessful because the combine, a dedicated rice and barley harvester has not enough space and proper power take-off for barley seeder. To develop a barley seeder, small powered motor speed controller was required. A proximity sensor for detecting working speed of the combine and a programmable one board microprocessor was used to develope a control system. Motor parameters and motor constant, relationship between seeding rate, motor speed, groove volumes of a tested roller, torque were measured. The proximity sensor sent a frequency signal to the microprocessor. In laboratory experiments, the excitation voltage of the motor was shown not to be proportional to the size of pulse width (duty ratio). A table transforming frequency signal, that represented for working speed to proper pulse width was developed from seeding rate experiments. However, seeding rate at low frequency signal was not proportional to the working speed. Seeding rate control proportional to the frequency signal was achieved by shifting of the frequency signal.

  • PDF

A Study on the Fashion Sensibilities of Korean Clubbers (한국 클러버(Clubber)의 패션 스타일 연구)

  • Kim, Ji-Lyang;Choy, Hyon-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.4
    • /
    • pp.155-170
    • /
    • 2008
  • Club culture is the global trend for youth in 21st century. Club is the space that is created with close relationship among music, dance and fashion. It is also experimental cultural art space with endlessly transforming style. Furthermore it is a space for independent minor culture which represents speciality than generality of cultural appetite and style of club. Cultural communities formed around club and their parties have placed as a strong subculture trend based on youth age group. What they are creating as a subculture could be our tomorrow's main trend and clubbers also could be our major power sources for future. Therefore it is necessary to pay attention to club culture. The purposes of this research are to identify the concept of clubber, to analyzes their basic club culture characteristics and elements, and to find out unique fashion styles of Korean clubber in comparison with the origin. To study club fashion style's origin and background, this study searched a theoretical flow from 1930's to 1990's. Then, Korean clubber's style is derived by comparing background and origin of Korean club culture with those of abroad. To analyze in various point of view, theoretical backgrounds about social, cultural, dresses, and design were considered. Since research target is a visual image, street fashion is analyzed on through, music channels and magazines from 1930's to present as well as designer's art photographies. Internet sites', cub culture association's and sound association's photos were also extracted. as a visual evidences to offer actual evidences. Geological targets are selected among Korean club culture's origin such as Hong-Ik University area, Shin-chon, Chungdam-dong and Apgujung-dong areas. The results of this study are as follows. Firstly, clubber's fashion style influenced magnificently on major fashion design instead of being just youngster's resistance toward control group and it is contributing to our fashion culture to enrich it. Secondly, fashion styles of korean clubbers are based on those of western sub-culture, but with a unique localized history.

3D Accuracy Analysis of Mobile Phone-based Stereo Images (모바일폰 기반 스테레오 영상에서 산출된 3차원 정보의 정확도 분석)

  • Ahn, Heeran;Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.677-686
    • /
    • 2014
  • This paper analyzes the 3D accuracy of stereo images captured from a mobile phone. For 3D accuracy evaluation, we have compared the accuracy result according to the amount of the convergence angle. In order to calculate the 3D model space coordinate of control points, we perform inner orientation, distortion correction and image geometry estimation. And the quantitative 3D accuracy was evaluated by transforming the 3D model space coordinate into the 3D object space coordinate. The result showed that relatively precise 3D information is generated in more than $17^{\circ}$ convergence angle. Consequently, it is necessary to set up stereo model structure consisting adequate convergence angle as an measurement distance and a baseline distance for accurate 3D information generation. It is expected that the result would be used to stereoscopic 3D contents and 3D reconstruction from images captured by a mobile phone camera.