DOI QR코드

DOI QR Code

3D Accuracy Analysis of Mobile Phone-based Stereo Images

모바일폰 기반 스테레오 영상에서 산출된 3차원 정보의 정확도 분석

  • Ahn, Heeran (Dept. of Geoinformatic Engineering, Inha University) ;
  • Kim, Jae-In (Dept. of Geoinformatic Engineering, Inha University) ;
  • Kim, Taejung (Dept. of Geoinformatic Engineering, Inha University)
  • 안희란 (인하대학교 지리정보공학과) ;
  • 김재인 (인하대학교 지리정보공학과) ;
  • 김태정 (인하대학교 지리정보공학과)
  • Received : 2014.07.02
  • Accepted : 2014.08.26
  • Published : 2014.09.30

Abstract

This paper analyzes the 3D accuracy of stereo images captured from a mobile phone. For 3D accuracy evaluation, we have compared the accuracy result according to the amount of the convergence angle. In order to calculate the 3D model space coordinate of control points, we perform inner orientation, distortion correction and image geometry estimation. And the quantitative 3D accuracy was evaluated by transforming the 3D model space coordinate into the 3D object space coordinate. The result showed that relatively precise 3D information is generated in more than $17^{\circ}$ convergence angle. Consequently, it is necessary to set up stereo model structure consisting adequate convergence angle as an measurement distance and a baseline distance for accurate 3D information generation. It is expected that the result would be used to stereoscopic 3D contents and 3D reconstruction from images captured by a mobile phone camera.

본 논문에서는 모바일폰 카메라를 이용하여 취득한 스테레오 영상으로부터 3차원 정보를 산출하고 이를 통해 3차원 정확도를 분석하고자 한다. 3차원 정확도 분석을 위해 스테레오 모델의 수렴각 변화에 따른 정확도 결과를 비교하였다. 본 논문에서는 내부 파라미터 산출과 영상의 왜곡보정 그리고 종속적 상대표정을 이용한 스테레오 영상의 기하구조 추정을 통해 모델 공간 상의 3차원 좌표를 계산하였으며, 이를 객체 공간 상의 좌표계로 변환함으로써 정량적인 3차원 정확도 분석을 수행하였다. 실험결과에서는 스테레오 모델의 수렴각이 약 $17^{\circ}$ 이상일 때, 상대적으로 높은 정확도를 갖는 3차원 정보가 생성됨을 확인하였다. 결과적으로 정확도 높은 3차원 정보 생성을 위해서는 촬영거리 및 기선거리를 고려하여 적절한 수렴각을 이루는 스테레오 모델 수립이 필요하다. 본 논문의 결과가 향후 모바일폰의 스테레오 영상을 이용한 입체영상 제작 및 3차원 객체 복원 등 관련 연구에 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Kim, J., Park, W., Hong, S., The 3D Modelling of Cultural Heritage Using Digital Photogrammetry, Korean Journal of Geomatics, vol. 21, no. 4, pp. 365-371, 2003.
  2. Kim, J., Yun, I., Lee, S., On Shape Recovery of 3D Object from Multiple Range Images, Journal of the Institute of Electronics Engineers of Korea. SP, vol. 37, no. 1, pp. 1-15, 2000.
  3. Hwang, S., Yoo, J., Kim, H., Kim, S., Paeng, K., Kim, S., High-resolution 3D Object Reconstruction using Multiple Cameras, Journal of the Institute of Electronics Engineers of Korea, vol. 50, no. 10, pp. 150-161, 2013. https://doi.org/10.5573/ieek.2013.50.10.150
  4. Chu, C., Park, J., Kim, H., Park, J., Lim, S., Koo, B., Recent Trends of 3D Reconstruction Technology, Electronics and telecommunications trends, vol. 22, no. 4, pp. 1-11, 2007.
  5. Jung, S., Lee, J., User-friendly 3D Object Reconstruction Method based on Structured Light in Ubiquitous Environments, The Journal of the Korea Contents Association, vol. 13, no. 11, pp. 523-532, 2013. https://doi.org/10.5392/JKCA.2013.13.11.523
  6. Raghavendra, R., Raja, K. B., Pflug, A., Yang, B., Busch, C., 3D Face Reconstruction and Multimodal Person Identification from Video Captured Using Smartphone Camera, Technologies for Homeland Security (HST), 2013 IEEE International Conference on, pp. 552-557, 2013.
  7. Won, J., Yoo, J., Park, I., Active 3D Shape Acquisition on a Smartphone, Journal of the Institute of Electronics Engineers of Korea. SP, vol. 48, no. 6, pp. 27-34, 2011.
  8. Hartley, R., Zisserman, A., Multiple View Geometry in Computer Vision, 2nd ed., Cambridge University Press, New York, 2003.
  9. Nister, D., An efficient solution to the five-point relative pose problem, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 6, pp. 756-770, June 2004 https://doi.org/10.1109/TPAMI.2004.17
  10. Kim, G., Jeong, S., Kim, B., The Change of Interior Orientation Parameters in Zoom Lens Digital Cameras, Korean Journal of Geomatics, vol. 28, no. 1, pp. 93-98, 2010.
  11. Park, K., Choi, S., Evaluation of the Quantitative Practical Use of Smart Phone Stereo Cameras, Journal of the Korean Society for GeoSpatial Information System, vol. 20, no. 2, pp. 93-100, 2012. https://doi.org/10.7319/kogsis.2012.20.2.093
  12. Kim, J., Jin, C., Lee, S., Lee, S., Choi, C., Geometric Calibration and Accuracy Evaluation of Smartphone Camera, Journal of the Korean Society for GeoSpatial Information System, vol. 19, no. 3, pp. 115-125, 2011.
  13. Lowe, D. G., Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  14. Fischler, M. A., Bolles, R. C., Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981. https://doi.org/10.1145/358669.358692
  15. Kim, J., Kim, T., Precise Rectification of Misaligned Stereo Images for 3D Image Generation, Journal of broadcast engineering, vol. 17, no. 2, pp. 411-421, 2012. https://doi.org/10.5909/JEB.2012.17.2.411
  16. Wolf, P. R., Dewitt, B. A., Elements of photogrammetry with application in GIS, 3rd Ed., McGraw-Hill, New York, 2000.
  17. http://graphics.cs.msu.ru/en/research/projects/3dreconstruction/cppcalibration
  18. http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/ camera_calibration.html
  19. Fraser, C. S., Digital camera self-calibration, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 52, no. 4, pp. 149-159, 1997. https://doi.org/10.1016/S0924-2716(97)00005-1
  20. Jeong, J., Kim, T., Analysis of Dual-Sensor Stereo Geometry and Its Positioning Accuracy, Photogrammetric Engineering & Remote Sensing, vol. 80, no. 7, pp. 653-661, 2014. https://doi.org/10.14358/PERS.80.7.653