• 제목/요약/키워드: transforming growth factor-B

검색결과 104건 처리시간 0.032초

TGF-$\alpha$, -$\beta$$_1$, and bFGF mRNA Expression of Lens Epithelial Cells in Senile and Diabetic Cataract

  • Hwang, Bum-Noon;Her, Jun
    • 대한의생명과학회지
    • /
    • 제8권3호
    • /
    • pp.127-135
    • /
    • 2002
  • Anterior subcapsular cataract was developed by opacification with transdifferentiation and abnormal proliferation of lens epithelial cells (LECs) and pathological accumulation of extracellular matrix (ECM). After-cataract also be caused by a similar transdifferentiation of LECs remaining after surgery and the accompanying increase of ECM deposits. It is blown that prostaglandin E2 and cytokine, such as TGF-$\beta$, bFGF, and IL-1, were associated with abnormal proliferation and transdifferentiation of LECs. The aim of this study was to detect the expression of transforming growth factor-$\alpha$ (TGF-$\alpha$), transforming growth factor-$\beta_1$(TGF-$\beta_1$) and basic fibroblast growth factor (bFGF) in LECs of senile and diabetic cataract. The expressions of these growth factors in lens epithelial cells were determined. The sample for growth factor determination were collected in senile cataract patients without metabolic disorder, especially diabetes mellitus and diabetic cataract patients. The mRNA expression of growth factors was detected by semi-quantitative reverse transcription - polymerase chain reaction (RT-PCR) followed by Southern blot analysis. Statistics were analysed using Wilcoxon rank sum test. Semi-quantitative RT-PCR/southern analysis of RNA obtained from thirty surgical specimens demonstrated that the level of mRNA expression of TGF-$\alpha$, -$\beta_1$ and bFGF was increased in diabetic cataract lens tissues compared with senile cataract specimens but non-significant, bFGF and TGF-$\beta_1$ mRNA expression were detected in most patients, expression level of TGF-$\beta_1$ was most high on the basis of normal ocular concentration. Detection rate of TGF-$\alpha$ in diabetic cataract was 1.5 fold higher than in senile cataract (P=0.098). TGF-$\alpha$, TGF-$\beta_1$, and bFGF mRNA expression of LECs were detected in senile and diabetic cataract. In both patient groups, expression level of TGF-$\beta_1$, mRNA was high, so We suggest TGF-$\beta_1$ strong influence in development of senile cataract and of diabetic cataract also. TGF-$\alpha$ expression level was similar but more frequently detected in diabetic cataract than in senile cataract. In conclusion, TGF-$\alpha$ may be associated with early development of diabetic cataract.

  • PDF

Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

  • Lee, Su Ui;Kim, Mun-Ock;Kang, Myung-Ji;Oh, Eun Sol;Ro, Hyunju;Lee, Ro Woon;Song, Yu Na;Jung, Sunin;Lee, Jae-Won;Lee, Soo Yun;Bae, Taeyeol;Hong, Sung-Tae;Kim, Tae-Don
    • Molecules and Cells
    • /
    • 제44권1호
    • /
    • pp.38-49
    • /
    • 2021
  • Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel-forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

ROLES OF MAPK PATHWAYS IN GDNF-INDUCED GLIOMA CELL MIGRATION

  • Hyun Song;Chung, Dong-June;Choung, Pill-Hoon;Aree Moon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.140-140
    • /
    • 2002
  • Glial cell-derived neurotrophic factor (GDNF) is a potent neurotrophic factor that enhances survival of midbrain doparminergic neuron and is a member of the transforming growth factor-b superfamily. GDNF and its receptors are widely distributed in brain and are believed to be involved in the control of neuron survival, proliferation and differentiation.(omitted)

  • PDF

Function of hepatocyte growth factor in gastric cancer proliferation and invasion

  • Koh, Sung Ae;Lee, Kyung Hee
    • Journal of Yeungnam Medical Science
    • /
    • 제37권2호
    • /
    • pp.73-78
    • /
    • 2020
  • Cancer incidence has been increasing steadily and is the leading cause of mortality worldwide. Gastric cancer is still most common malignancy in Korea. Cancer initiation and progression are multistep processes involving various growth factors and their ligands. Among these growth factors, we have studied hepatocyte growth factor (HGF), which is associated with cell proliferation and invasion, leading to cancer and metastasis, especially in gastric cancer. We explored the intercellular communication between HGF and other surface membrane receptors in gastric cancer cell lines. Using complimentary deoxyribonucleic acid microarray technology, we found new genes associated with HGF in the stomach cancer cell lines, NUGC-3 and MKN-28, and identified their function within the HGF pathway. The HGF/N-methyl-N'-nitroso-guanidine human osteosarcoma transforming gene (c-MET) axis interacts with several molecules including E-cadherin, urokinase plasminogen activator, KiSS-1, Jun B, and lipocalin-2. This pathway may affect cell invasion and metastasis or cell apoptosis and is therefore associated with tumorigenesis and metastasis in gastric cancer.

신경성장촉진 인자가 인간 배아줄기세포 유래 도파민 분비 신경세포형성에 미치는 영향 (Effects of Neurotrophic Factors on the Generation of Functional Dopamine Secretory Neurons Derived from in vitro Differentiated Human Embryonic Stem Cells)

  • 이금실;김은영;신현아;조황윤;왕규창;김용식;이훈택;정길생;이원돈;박세필;임진호
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권1호
    • /
    • pp.19-27
    • /
    • 2004
  • Objective: This study was to examine the in vitro neural cell differentiation patterns of human embryonic stem (hES) cells following treatment of various neurotrophic factors [basic fibroblast growth factor (bFGF), retinoic acid (RA), brain derived neurotrophic factor (BDNF) and transforming growth factor (TGF)-$\alpha$], particulary in dopaminergic neuron formation. Methods: The hES cells were induced to differentiate by bFGF and RA. Group I) In bFGF induction method, embryoid bodies (EBs, for 4 days) derived from hES were plated onto gelatin dish, selected for 8 days in ITSFn medium and expanded at the presence of bFGF (10 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14 and 21 days. Group II) For RA induction, EBs were exposed of RA ($10^{-6}M$) for 4 days and allowed to differentiate in N2 medium for 7, 14 and 21 days. Group III) To examine the effects of additional neurotrophic factors, bFGF or RA induced cells were exposed to either BDNF (10 ng/ml) or TGF-$\alpha$ (10 ng/ml) during the 21 days of final differentiation. Neuron differentiation and dopamine secretion were examined by indirect immunocytochemistry and HPLC, respectively. Results: The bFGF or RA treated hES cells were resulted in similar neural cell differentiation patterns at the terminal differentiation stage, specifically, 75% neurons and 11% glial cells. Additionally, treatment of hES cells with BDNF or TGF-$\alpha$ during the terminal differentiation stage led to significantly increased tyrosine hydroxylase (TH) expression of a dopaminergic neuron marker, compared to control (p<0.05). In contrast, no effect was observed on the rate of mature neuron (NF-200) or glutamic acid decarboxylase-positive neurons. Immunocytochemistry and HPLC analyses revealed the higher levels of TH expression (20.3%) and dopamine secretion (265.5 $\pm$ 62.8 pmol/mg) in bFGF and TGF-sequentially treated hES cells than those in $\alpha$ RA or BDNF treated hES cells. Conclusion: These results indicate that the generation of dopamine secretory neurons from in vitro differentiated hES cells can be improved by TGF-$\alpha$ addition in the bFGF induction protocol.

Expression of transforming growth factor-1 in bone regeneration after the implantation of particulate dentin and plaster of Paris

  • Huh, Young-Chul;Kim, Su-Gwan;Kim, Jeong-Sun;Yoon, Jung-Hoon;Kim, Do-Kyung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권1호
    • /
    • pp.27-35
    • /
    • 2006
  • Purpose: This study was performed to investigate the expression of the transforming growth factor (TGF)-1, in a rat calvarium defect model using particulate dentin and/or plaster of Paris, and correlate the bone regeneration process with the histologic events. Materials and Methods: Thirty-two Sprague-Dawley rats were divided into 4 groups of 8 animals each. A 1.0 cm-sized calvarial defects were made and the defect was filled with different graft materials as follows : Group A, the defects were filled with a mixture of particulate dentin and plaster of Paris with a 2:1 ratio; Group B, the defects were filled with plaster of Paris only; Group C, defects were filled with particulate dentin only; Group D, untreated control group. The animals were sacrificed by 1, 2, 4, 8 weeks after implantation. Excised wound tissues were processed for histology, immunohistochemistry and RT-PCR for the analysis of TGF-1 expression. Results: Gene expression of TGF-1 was detected for all experimental groups. The highest gene expression was observed in the specimen taken at the first week after implantation in Group A. According to the histologic and immunohistochemical studies, TGF-1 positive osteoblast-like cells were found in the early stage of healing after the implantation of particulate dentin and plaster of Paris. Conclusion: These findings suggest that TGF-1 may be related to new bone formation at the early healing process after the implantation of particulate dentin and plaster of Paris.

골수기질세포 및 섬유아세포의 창상치유 촉진 성장인자 분비능 비교 (Comparison of Bone Marrow Stromal Cells with Fibroblasts in Wound Healing Accelerating Growth Factor Secretion)

  • 김세현;한승규;윤태환;김우경
    • Archives of Plastic Surgery
    • /
    • 제33권1호
    • /
    • pp.1-4
    • /
    • 2006
  • Cryopreserved fibroblast implants represent a major advancement for healing of chronic wounds. Bone marrow stromal cells, which include the mesenchymal stem cells, have a low immunity-assisted rejection and are capable of expanding profoundly in a culture media. Therefore, they have several advantages over fibroblasts in clinical use. The ultimate goal of this study was to compare the wound healing accelerating growth factor secretion of the bone marrow stromal cells with that of the fibroblasts and this pilot study particularly focuses on the growth factor secretion to accelerate wound healing. Bone marrow stromal cells and fibroblasts were isolated from the same patients and grown in culture. At 1, 3, and 5 days post-incubating, secretion of basic fibroblast growth factor(bFGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta(TGF-${\beta}$) were compared. In TGF-${\beta}$ secretion fibroblasts showed 12~21% superior results than bone marrow stromal cells. In contrast, bFGF levels in the bone marrow stromal cells were 47~89% greater than that in fibroblasts. The VEGF levels of the bone marrow stromal cells was 7~12 fold greater than that of the fibroblasts. Our results suggest that the bone marrow stromal cells have great potential for wound healing accelerating growth factor secretion.

Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer

  • Kim, Hyunhee;Choi, Pilju;Kim, Taejung;Kim, Youngseok;Song, Bong Geun;Park, Young-Tae;Choi, Seon-Jun;Yoon, Cheol Hee;Lim, Won-Chul;Ko, Hyeonseok;Ham, Jungyeob
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.134-148
    • /
    • 2021
  • Background: Lung cancer has a high incidence worldwide, and most lung cancer-associated deaths are attributable to cancer metastasis. Although several medicinal properties of Panax ginseng Meyer have been reported, the effect of ginsenosides Rk1 and Rg5 on epithelial-mesenchymal transition (EMT) stimulated by transforming growth factor beta 1 (TGF-β1) and self-renewal in A549 cells is relatively unknown. Methods: We treated TGF-β1 or alternatively Rk1 and Rg5 in A549 cells. We used western blot analysis, real-time polymerase chain reaction (qPCR), wound healing assay, Matrigel invasion assay, and anoikis assays to determine the effect of Rk1 and Rg5 on TGF-mediated EMT in lung cancer cell. In addition, we performed tumorsphere formation assays and real-time PCR to evaluate the stem-like properties. Results: EMT is induced by TGF-β1 in A549 cells causing the development of cancer stem-like features. Expression of E-cadherin, an epithelial marker, decreased and an increase in vimentin expression was noted. Cell mobility, invasiveness, and anoikis resistance were enhanced with TGF-β1 treatment. In addition, the expression of stem cell markers, CD44, and CD133, was also increased. Treatment with Rk1 and Rg5 suppressed EMT by TGF-β1 and the development of stemness in a dose-dependent manner. Additionally, Rk1 and Rg5 markedly suppressed TGF-β1-induced metalloproteinase-2/9 (MMP2/9) activity, and activation of Smad2/3 and nuclear factor kappa B/extra-cellular signal regulated kinases (NF-kB/ERK) pathways in lung cancer cells. Conclusions: Rk1 and Rg5 regulate the EMT inducing TGF-β1 by suppressing the Smad and NF-κB/ERK pathways (non-Smad pathway).

혈소판 농축 섬유소가 골모세포 증식과 분화에 미치는 영향 (The Effects of Platelet-Rich Fibrin on Osteoblast Proliferation and Differentiation: Effects of Platelet-Rich Fibrin on Osteoblasts)

  • 정해수;배현숙;홍기석
    • 치위생과학회지
    • /
    • 제13권2호
    • /
    • pp.158-164
    • /
    • 2013
  • 임플란트 식립 시 가장 빈번하게 맞게 되는 문제점으로 임플란트 식립 부위에서의 불충분한 골량과 해부학적 구조에 의한 접근성의 문제를 들 수 있다. 일반적으로 성장 인자들은 치유 과정이나 조직 형성에 있어서 가장 기본적인 필수 요소로 인정되고 있다. 이러한 이유로 골 이식 재료의 효과를 증진시키기 위한 성장 인자들이 최근에 주목을 받고 있다. 혈소판 내 granules에는 높은 농도의 다양한 성장 인자들이 포함되어 있다. 특히, platelet-rich fibrin (PRF)는 2세대 혈소판 농축 인자로 항응고제가 들어있지 않은 상태로 얻을 수가 있고, 혈소판과 많은 성장 인자들이 풍부한 섬유소 막을 포함하고 있다. 이번 연구의 목적은 in vitro 상에서 골아 세포에 대한 PRF의 영향을 알아보고자 하였다. 특히 치유와 재생에 연관된 주요 기능으로써 증식과 분화에 대한 영향을 조사하고자 하였다. 이를 위해서, PRF 내에서 방출되는 성장 인자(platelet-derived growth factor subunit B와 transforming growth factor-${\beta}1$)의 농도, 세포의 생존능력, alkaline phosphatase (ALP) activity, type 1 collagen 합성, 골아 세포의 분화 지표로써 ALP와 Runx2의 발현 정도와 골 기질 단백질로써 type 1 collagen의 발현 정도에 대해서 조사하였다. 이 실험을 통하여 PRF는 치유 시 필요한 타당한 기간 동안에 충분히 자가 성장 인자의 방출을 유지하고 있음을 알 수 있었고, 골아 세포의 증식과 분화에 대해서 긍정적인 효과가 있음을 보여 주였다. 제한적인 실험이지만, 골재생을 위한 PRF의 사용은 골 치유와 골 개조에 있어서 증진 효과를 가져다줄 수 있는 촉망되는 방법 중 하나가 될 수 있을 것이다.

영지의 ${\beta}$-glucan성 다당류에 의해 활성화된 흰쥐 간내 Kupffer 세포의 NO, TNF-${\alpha}$ 및 TGF-${\beta}$ 형성 (Nitric Oxide, TNF-${\alpha}$ and TGF-${\beta}$ Formation of Rat Kupffer Cell Activated by the ${\beta}$-Glucan from Ganoderma lucidum)

  • 한만덕;이준우;정훈;김용석;나수정;윤경하
    • 한국미생물·생명공학회지
    • /
    • 제27권1호
    • /
    • pp.28-34
    • /
    • 1999
  • Ganoderan (GAN), an immunomodulating ${\beta}$-glucan from mushroom Ganoderma lucidum, was evaluated for its ability to induce formation of nitric oxide (NO), tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) and transforming growth factor (TGF-${\beta}$) from rat Kupffer cell in vitro. Hepatic macrophages activated by GAN significantly elevated concentration of NO and TNF-${\alpha}$ in cultured medium, but not significantly elevated that of TGF-${\beta}$. GAN-activated Kupffer cells secrete 14.9${\mu}$M (p<0.01) of NO and 2619.5${\rho}$g/ml (p<0.01) of TNF-${\alpha}$after 36hr of incubation at 37$^{\circ}C$. The results revealed that GAN enhanced 4-fold production of NO and 19 fold formation of TNF-${\alpha}$ compared to the control. The proliferation of GAN-activated Kupffer cells was inhibited as compared with its negative control. Comparing the activity among glucans derived from microorganisms, highly branched zymosan, glucomannan from Saccharomyces cerevisiae, significantly increased TNF-${\alpha}$ and NO production. These results indicate that the ${\beta}$-glucan from G. lucidum activates rat Kupffer cell and secretes NO and TNF-${\alpha}$. It also suggest that rat Kupffer cell posses certain receptor for ${\beta}$-anomeric glucan.

  • PDF