• Title/Summary/Keyword: transformer windings

Search Result 224, Processing Time 0.025 seconds

A study of Induction Voltage Regulator Imporvement (동극 및 이극에 의한 유도전 압조정방식)

  • 오상세
    • 전기의세계
    • /
    • v.15 no.5
    • /
    • pp.32-39
    • /
    • 1966
  • This voltage Regulator, which regulates voltage in different way from the conventional regulator, is constructed by circular-plate core type stators and controllers (are similar to rotor of conventional). The principle of this Voltage Regulator is based on the rotating magnetic field theory including peculiar homopolar and heteropolar concept. Comparing with the conventional induction regulator, this regulator need not to have short windings and can cancel armature reaction. Moreover, it is able to decrease the machine noise and control the phase of it freely. And it's efficiency can become more than 95% which almost the same as that of transformer's. By increasing numbers of cores of the same size, the output power can be increased, the insulation can be decreased and high Voltage can directly be connected because applied voltage is distributed to each core. This Voltage Regulator can be also used as a current regulator, a starter a induction motor and a phase transformer etc.

  • PDF

Voltage Unbalance Evaluation in Autotransformer-Fed Electric Railway Systems using Circuit Analysis (회로해석을 이용한 전기철도 급전시스템의 전압불평형 평가)

  • 오광해;차준민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.20-28
    • /
    • 1998
  • This study proposes a new method to estimate voltage unbalance more exactly using Thevenin's equivalent circuit. The conventional simple formula were easily applied to evaluate voltage unbalance. Because the formula was derived on the assumption that traction load would be directly connected to the secondary windings of the main transformer, they could not consider the detailed characteristics of traction power supply system, for example, self and mutual impedances of rail, catenary and return feeder. So, the ac쳐racy of the results could not be guaranteed. The proposed algorithm is applied to a standard autotransformer-fed test system to analyze unbalance phenomena. Through simulations, we could evaluate voltage and current unbalance factors and compare the voltage unbalance of the three transformer connection schemes : single phase, V- and Scott-connections which are required for suitable train operation schedules. Additionally, we could determine the combinations of trains which can be operated under the unbalance factor limits.

  • PDF

Stabilization Analysis of Piezo-electric Converter for PFM and PWM Control (압전 변압기의 제어 방식에 따른 모델링 및 안정화분석)

  • Yun, Seok-Teak;Park, Seong-Woo;Won, Young-Jin;Lee, Jin-Ho;Kim, Jin-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.401-401
    • /
    • 2009
  • Recently, demands for the development of compact, lightweight power supplies with higher power density and higher efficiency have been increased. Since Piezoelectric Transformer (PT) was emerged in device and material industry, it has been suggested as a viable alternative to the magnetic transformer in some applications. PT has some advantages such as low profile and mechanical energy transfer with little electromagnetic interface (EMI). Also, PT can provide high voltage stepping ratio with good isolation and requires no copper windings saving copper usage especially for large voltage conversion differences. Conventional control of PT converter has mainly two-way. One is the pulse frequency modulation (PFM) control method and the other is the pulse width modulation (PWM) control with frequency fixed method. It is known that the maximum PT efficiency can be obtained when it operates near the resonant frequency of the PT. And, also PT's resonant frequency moves according to the load condition. Therefore, selection of PT converter control method is very difficult. This paper analyzes general piezo-electric converter modeling and proposes a guide-line to selection of control method and stabilization control.

  • PDF

Design And Implementation of a Novel Sustain Driver for Plasma Display Panel

  • Agarwal Pankaj;Kim Woo-Sup;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.403-405
    • /
    • 2006
  • Over the years, plasma display panel (PDP) manufacturers have impressed the flat panel display industry with yet another new product essentially having the merits of a larger screen size. Since larger size implies higher power ratings, voltage/current ratings of the power devices used have become a rising concern. Another important concern is the brightness of PDP, one way of increasing which is by operating the PDP at higher frequencies. In order to address the above issues, a transformer coupled sustain-driver for AC-PDP is proposed During the transition time, the two windings of the transformer greatly boost up the displacement current flowing through the panel capacitance and hence enable a fast inversion of the voltage polarity with practical values of resonant inductance. In the proposed topology, the resonant inductance can be increased by a factor of $(n+1)^2$ as compared to prior approaches. Increased inductance results in lower current stresses. Moreover, high frequency operation is possible by using higher value of n (turn ratio of the transformer). The operational principle and design procedure of the proposed circuit are presented with theoretical analysis. The validity of the proposed sustain driver is established through simulation and experimental results using a 42-in PDP

  • PDF

Establishment of National Standard System for 20.000 A Current Transformer (20,000 A 전류변성기 국가표준 시스템 구축)

  • Jung, Jae-Kap;Lee, Sang-Hwa;Kang, Jean-Hong;Kim, Myung-Soo;Kim, Yoon-Hyoung;Han, Sang-Gil;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.6-13
    • /
    • 2008
  • National standard system for calibrating current transformer(CT) up to primary current of 20,000A have been established. The system consists of 20,000 A AC high current source, CT comparator, standard CT, CT under test and CT burden. An AC high current is applied tn the primary windings of both the standard CT and the CT under test, and then the CT comparator measures the ratio error and the phase displacement by comparing the secondary currents of the two transformers. As a validity check for 20,000 A CT calibration system, the comparison with the two national standard institutes(NMIs) has been performed using same CTs. The comparison results of the CTs are consistent with those measured at two NMIs within 0.004 % for ratio error and 0.1 min for phase displacement in the primary current ranges of Ip = 10 - 20,000 A with a secondary current of Is = 5 A.

Split-Capacitor Dual-Active-Bridge Converter (Split-Capacitor Dual-Active-Bridge 컨버터)

  • Kim, Kisu;Park, Siho;Cha, Honnyong;Choi, Byungcho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.352-358
    • /
    • 2018
  • A split-capacitor (SC) dual-active-bridge (DAB) converter is proposed in this study. The DC-link capacitors of input and output are split in the proposed converter. The primary and secondary windings of transformer are connected to the midpoints of the DC-links. Hence, the SC DAB converter can inherently prevent transformer from saturation. Although the switch current stress of the proposed converter is twice that of the conventional DAB converter, the switch voltage stress is reduced by half. Therefore, the proposed converter can reduce switching loss and achieve high efficiency in a high switching frequency. Given the SC structure, the proposed converter can readily be connected to neutral-point-clamped- or half-bridge-type converters. The topology of the proposed converter is presented and the operating principle is analyzed in detail. A 3-kW hardware prototype was built and tested to verify the performance of the proposed converter.

A New Dual-Active Soft-Switching Converter for an MTEM Electromagnetic Transmitter

  • Wang, Xuhong;Zhang, Yiming;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1454-1468
    • /
    • 2017
  • In this study, a new dual-active soft-switching converter is proposed to improve conversion efficiency and extend the load range for an MTEM electromagnetic transmitter in geological exploration. Unlike a conventional DC/DC converter, the proposed converter can operate in passive soft-switching, single-active soft-switching, or dual-active soft-switching modes depending on the change in load power. The main switches and lagging auxiliary switches of the converter can attain soft-switching over the entire load range. The conduction and switching losses are greatly reduced compared with those of ordinary converters under the action of the cut-off diodes and auxiliary windings coupled to the main transformer in the auxiliary circuits. The conversion efficiency of the proposed converter is significantly improved, especially under light-load conditions. First, the working principle of the proposed converter is analyzed in detail. Second, the relationship between the different operating modes and the load power is given and the design principle of the auxiliary circuit is presented. Finally, the Saber simulation and experimental results verify the feasibility and validity of the converter and a 50 kW prototype is implemented.

Analysis on Fault Current limiting and Recovery Characteristics of Flux-Lock Type Superconducting Fault Current Limiter According to Increase of Applied Voltage (전압증가에 따른 자속구속형 초전도 한류기의 전류제한 및 회복특성 분석)

  • Oh, Kum-Gon;Han, Tae-Hee;Cho, Yong-Sun;Cho, Hyo-Sang;Choi, Myoung-Ho;Han, Young-Hee;Sung, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.107-112
    • /
    • 2007
  • The flux-lock type SFCL consists of transformer with primary and secondary windings connected to a superconducting element in serial. It can be divided into the subtractive and the additive polarity windings according to the winding direction. It could change the fault current limiting characteristics according to the inductance ratio between the coil 1 and coil 2. We investigated the voltage-current characteristics of the flux-lock type SFCL according to the increment of applied voltage. When the applied voltage of the SFCL with the subtractive and the additive polarity windings was increased a initial limiting current ($I_{ini}$) and the quench time of the superconducting element were increased. The recovery time of the superconducting element was increased by increment of applied voltage. Therefore, it was confirmed that recovery characteristics in the flux-lock type SFCL were largely dependent on the consumed energy of a superconducting element because of increment of the consumption power into the superconducting element.

Study on the Damage Pattern Analysis of a 3 Phase 22.9/3.3kV Oil Immersed Transformer and Judgment of the Cause of Its Ignition (3상 22.9/3.3kV 유입변압기의 소손패턴 해석 및 발화원인 판정에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1274-1279
    • /
    • 2011
  • The purpose of this paper is to present the manufacturing defect and damage pattern of a 3 phase 22.9/3.3kV oil immersed transformer, as well as to present an objective basis for the prevention of a similar accident and to secure data for the settlement of PL related disputes. It was found that in order to prevent the occurrence of accidents to transformers, insulating oil analysis, thermal image measurement, and corona discharge diagnosis, etc., were performed by establishing relevant regulation. The result of analysis performed on the external appearance of a transformer to which an accident occurred, the internal insulation resistance and protection system, etc., showed that most of the analysis items were judged to be acceptable. However, it was found that the insulation characteristics between the primary winding and the enclosure, those between the ground and the secondary winding, and those between the primary and secondary windings were inappropriate due to an insulating oil leak caused by damage to the pressure relief valve. From the analysis of the acidity values measured over the past 5 years, it is thought that an increase in carbon dioxide (CO2) caused an increase in the temperature inside the transformer and the increase in the ethylene gas increased the possibility of ignition. Even though 17 years have passed since the transformer was installed, it was found that the system's design, manufacture, maintenance and management have been performed well and the insulating paper was in good condition, and that there was no trace of public access or vandalism. However, in the case of transformers to which accidents have occurred, a melted area between the upper and the intermediate bobbins of the W-phase secondary winding as well as between its intermediate and lower bobbins. It can be seen that a V-pattern was formed at the carbonized area of the transformer and that the depth of the carbonization is deeper at the upper side than the lower side. In addition, it was found that physical bending and deformation occurred inside the secondary winding due to non-uniform pressure while performing transformer winding work. Therefore, since it is obvious that the accident occurred due to a manufacturing defect (winding work defect), it is thought that the manufacturer of the transformer is responsible for the accident and that it is lawful for the manufacture to investigate and prove the concrete cause of the accident according to the Product Liability Law (PLL).

Prediction of a Structural Vibration and Radiated Noise of High-voltage Transformer through Force Identification (가진력 규명을 통한 초고압 변압기의 구조진동 및 방사소음 예측)

  • Yoo, Suk-Jin;Jung, Byung-Kyoo;Jeong, Weui-Bong;Hong, Chinsuk;Kim, Tae-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.527-536
    • /
    • 2013
  • In order to predict structural vibration and radiated noise of high-voltage transformer in operation, it is necessary to precisely find the excitation force generated by the coils and core. However, finding the excitation force through experiments of high voltage transformer in operation is not possible. Therefore, this paper deals with identifying the excitation force by using the acceleration data measured through experiments and the transfer function estimated through finite element model. A method to predict structural vibration and radiated noise was also proposed. Three-phase windings and the core are the source of high-voltage transformer. The excitation forces were identified using the acceleration data and the transfer function of the surface of the tank. Structural vibration and radiated noise from the surface of the tank was predicted by using the identified excitation force. As a result of the interpretation of the experimental and computational analysis of structural vibration from the surface of the tank and radiated noise from the field point, the interpretation of the computational analysis showed relatively good accordance with the experiment.