• Title/Summary/Keyword: transformer windings

Search Result 224, Processing Time 0.073 seconds

Test of a High Temperature Superconducting Power Transformer (고온초전도변압기 특성시험)

  • Lee, H.J.;Cha, G.S.;Kim, W.S.;Han, S.Y.;Ryu, K.W.;Choi, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.33-35
    • /
    • 1999
  • This paper describes the test results of the single phase 3kVA high temperature superconducting power trans-former. The tapes are made with Bi-2223 and have silver alloy as the matrix. Four double pancake windings are used in total. Among them two double pancake windings are connected in series for high voltage winding and two double pancake windings are connected in parallel for low voltage winding. The rated voltages of each winding are 220/110 V. Fundamental characteristics are obtained through short circuit and no load tests. The over load capability and characteristics are investigated.

  • PDF

Comparison of Characteristics on the Flux-Lock and the Transformer Type SFCLs with Three Superconducting Units (3개의 초전도 소자를 갖는 자속구속형 SFCL과 변압기형 SFCL의 특성 비교)

  • Lee, Ju-Hyoung;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.79-84
    • /
    • 2009
  • In order to increase the capacity of the superconducting fault current limiter(SFCL), the current and voltage grades of the SFCL must be increased. As a method for the increase of the current and voltage grades of the SFCL, we compared the various characteristics between the flux-lock type SFCL "With three superconducting units connected in series and the transformer type SFCL using the transformer with three secondary circuits. One of three superconducting units had not quenched in the flux-lock type SFCL. Therefore, the unbalanced power burden happened because of the voltage difference generated by unbalanced quenching between the superconducting units. In the meantime, the three superconducting units were all quenched in the transformer type SFCL using the transformer, and the voltage difference generated between the superconducting units was decreased. Therefore, the difference of critical characteristics was complemented by distribution of fault current in accordance with the turn's ratio between primary and secondary windings. The unbalanced power burden of the superconducting units was reduced due to flux-share between the superconducting units in the transformer. In conclusion, the capacity increment of the SFCL using a transformer was easier due to equal distribution of voltages generated by simultaneous quench of the superconducting units. We think that the characteristics is improved more because of the decrease of saturation in the iron core if the secondary winding is increased in the SFCL using the transformer.

Research on Assessment Method of Deterioration Condition for Power Transformer Using Sweep Frequency Response Analyzer (주파수응답분석기를 이용한 전력용 변압기 열화상태 평가방법 연구)

  • Gil, Hyoung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.30-35
    • /
    • 2013
  • This paper describes the assessment method of deterioration condition for a power transformer using SFRA. Frequency Response Analysis(FRA) is a method to evaluate the mechanical and geometrical integrity of the core and windings within a power transformer by measuring the electrical transfer functions over a wide frequency range. SFRA is sweep frequency response analyzer for power transformer winding diagnosis. The FRA is a comparative method, that evaluates the transformer condition by comparing the obtained set of FRA results to reference results on the same, or a similar, unit. FRA techniques were widely used and much more sensitive than the traditional and internationally accepted method of impedance measurements, but that work was required on standardization and interpretation. In order to analyze the deterioration condition for power transformer, overvoltage test and mechanical distortion test were carried out. The deterioration condition for power transformer was evaluated by SFRA. It is intended to present the elemental technology of assessment method for power transformer using SFRA.

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드 변압기의 덕트에 따른 열해석 특성 연구)

  • 조한구;이운용;박영두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.348-352
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and ow loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

Analysis of Transient Characteristics of SFCL using the Three-Phase Transformer and Power Switch (삼상 변압기와 전력용 스위치를 이용한 초전도 한류기의 과도특성 해석)

  • Jung, Byung-Ik;Choi, Hyo-Sang;Park, Jung-Il;Cho, Geum-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1743-1747
    • /
    • 2012
  • The research of superconducting fault current limiter (SFCL) for reduction of the fault current is actively underway in the worldwide. In this paper, we analyzed the characteristics of a SFCL using the transformer and superconducting elements combined mutually in accordance with the fault types. The structure of this SFCL was composed of the secondary and third windings of a transformer connected to the load and the superconducting element, respectively. The provided electric power flew into the load connected to the secondary winding of the transformer in normal state. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the effect of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the current transformer(CT) and then turn-on and turn-off switching behavior of the secondary line in the transformer was performed by the silicon-controlled rectifier(SCR). As a result, the proposed SFCL limited the fault current within one-cycle efficiently. Also, the degradation of the superconducting element in the normal state was avoided.

The Temperature Distribution Analysis of Mold transformer (100kVA 주상용 몰드 변압기의 온도분포 해석)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.125-129
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by FEM(finite element method) to analyze winding temperature rise. In this paper, the temperature distribution and thermal stress analysis of 100kVA pole cast resin transformer for power distribution are investigated by FEM program.

  • PDF

Research on a New 12-Pulse Step-Up and Step-Down Aviation Auto-Transformer Rectifier

  • Jiang, Fan;Ge, Hong-juan;Dong, Xiao-xu;Zhang, Lu
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.266-276
    • /
    • 2018
  • This paper presents a new step-up and step-down multi-pulse auto-transformer rectifier unit (ATRU) topology. This structure can achieve a wide range of output voltages, which solves the problem of auto-transformer output voltage being difficult to regulate. Adding middle taps to the primary winding and reasonably setting the number of auto-transformer windings, constituted two groups of three-phase output voltages with a $30^{\circ}$ phase difference. Multi-pulse output DC voltage is obtained after a three-phase output voltage across two rectifier bridges and inter-phase reactor. Thus, the output DC voltage is related to the number and configuration of the auto-transformer winding. In this paper, the relationship between the voltage ratio of the auto-transformer and the ratio of winding, input current and auto-transformer kilovoltampere rating are deduced and validated by simulations. On this basis, the output voltage range is optimized. An experiment on two different voltage ratio principle prototypes was carried out to verify the correctness of the analysis design.

Electromagnetic Analysis of Transformer windings (변압기용 권선의 전자장 해석)

  • 박찬배;김우석;한송엽;최경달;주형길;홍계원
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.225-228
    • /
    • 2002
  • This paper presents electro-magnetic analysis of IMVA High T$_{c}$ Superconductivity transformer designed conceptually. A winding type of this transformer is a double pancake type, and a transformer of solenoidal winding type is selected to be compared with it. Both transformers have the same sizes and the same turns. Results of the analysis are compared with results of solenoidal winding. And, in this paper, leakage inductances are calculated too. There are a lot of methods to calculate inductance including Neumann Formula, Energy conservation and so on. In this paper, Energy conservation method are selected.d.

  • PDF

Movement Characteristics Analysis of Single Phase Transformer Winding Using Finite Element Method (유한요소법을 이용한 단상변압기권선의 운동특성해석)

  • Choi, Myoung-Jun;Kim, Hyung-Seok;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.104-106
    • /
    • 1996
  • In this paper, the dynamic motion driven by electromagnetic force of transformer windings is modeled and its characteristics are numerically analyzed. The electromagnetic field is obtained using the 2D finite element method taking account of anisotropic property of iron core, and the electromagnetic force on the transformer winding is calculated from Lorenz's force formula using the field distribution result. The system motion equation driven by electromagnetic force and gravitational force is numerically analyzed using the 4-order Runge-Kutta algorithm. Above analyses procedure is applied to a single-phase core-type transformer to validate its algorithm.

  • PDF

Study on Coil Insulation of HTS Transformer with Simulated Electrode (고온초전도 코일의 모의 전극계에서의 절연연구)

  • 정종만;백승명;이정원;곽동순;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.420-423
    • /
    • 2002
  • In this paper the characteristics of surface flashover for high temperature superconducting transformer(HTS) was discussed. The transformer, will be developed in the shell type with double pancake coil, isn't developed yet in the world. We conducted experiment of surface flashover that could occur in the windings of the transformer. First, we distinguished the surface flashover with electrode alignment into two type, such as parallel and vertical, and then compared with each characteristics of surface flashover. And the surface flashover with metallic particle was tested, it was also affected by the particle position. .

  • PDF