• Title/Summary/Keyword: transformer design

Search Result 895, Processing Time 0.026 seconds

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

A Study on the Design and Fabrication for Partial Discharge Measurment in 22.9kV Underground Power Cable using Planar Loop Sensor (22.9kV급 지중전력케이블의 부분방전 측정을 위한 평면루프센서 설계 및 제작 연구)

  • Shin, Dong-Hoon;Lim, Kwang-Jin;Lwin, Kyawsoe;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.210-211
    • /
    • 2007
  • The objective of this paper is to effectively detect partial discharges in underground power cables. In this field, we have been usually applied several sensors for such partial discharges. This study used a type of beyond compare antenna based on the influence of background noises. Also, we designed a new structure that is able to easily apply in the adhesion of planar loop types for underground power cables in measurement sensitiveness elevation. A high frequency simulation tool (CST-MWS) was applied to the antenna used in this study, and it was used to evaluate certain characteristics. We fabricated an antenna using the simulation data obtained from a specific test. After checking the sensitivity of this Planar Loop Sensor in the Lab, it was tested in an actual site. This paper analyzed the data as a part of time and frequency domain using an oscilloscope and spectrum analyzer, respectively.

  • PDF

The Suppression of both leakage current and common-mode voltage occurring three phase PWM voltage type inverter (3상 PWM 전압형 인버터에 발생하는 누설전류와 동상모드 전압의 억제)

  • Mun, S.P.;Suh, K.Y.;Kwon, S.K.;Kim, J.Y.;Kim, Y.M.;Kim, H.J.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1515-1517
    • /
    • 2005
  • In this paper, we represent both occurrence reason of Surge-voltage and Leakage-current of AC drive system which is operated by Voltage-type PWM Inverter. It generates a compensating voltage which has the same amplitude as, but the opposite phase to, the common-mode voltage produced by the PWM inverter. The compensating voltage is superimposed on the inverter output by a common-mode transformer. As a result, the common-mode voltage applied to the load is canceled completely. The design method of the active common-mode noise canceler is also presented in detail. Therefore, we try to describe the method controling both of them and all of the proprieties are proved by our experiment.

  • PDF

The Modeling of inductive power collector for vehicle (차량용 유도전력 집전 장치의 특성해석)

  • Han, K.H.;Lee, B.S.;Kim, D.W.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1610-1612
    • /
    • 2005
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the PRT(Personal Rapid Transit) system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The proposed the inductive power collector is used for the PRT system, which has a large air-gap and demands a large electrical power capability. But, low output power is generated due to a loosely coupled characteristic of the large air-gap. Therefore, double layer construction of secondary winding, which was divided in half to increase both output current and output voltage was suggested. Also, a model of power collector and parallel winding structure and a model of concentration/decentralization winding are presented, in addition, the performance of inductive power collector to alignment condition between the primary power line and the inductive power transformer was verified by computer simulation of 2kW model.

  • PDF

A study on an experimental basis a special character of insulating oil the use of a transformers (변압기용 절연유의 특성에 관한 실험적 연구)

  • Kim, Sung-Dae;Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5188-5193
    • /
    • 2011
  • This research is for temperature control of insulating oil inside the transformer. After I designed and manufactured various systems using Peltier element, which was thermal element, and Heat pipe, which was a cooling system, without electric power. The optimum system could be made by applying them to the temperature control for the insulating oil. I could verify that the combination type of Heat pipe 100 W+ Peltier 100W has a more outstanding capacity than pure Heat pipe 300 W within 60 degrees Celsius through experiments. Through this, I verify that the method of a proper design is prominent, and make an attempt at contribution to power saving effect and more effective control of Distributing board by using this combination type.

A New Dual-Active Soft-Switching Converter for an MTEM Electromagnetic Transmitter

  • Wang, Xuhong;Zhang, Yiming;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1454-1468
    • /
    • 2017
  • In this study, a new dual-active soft-switching converter is proposed to improve conversion efficiency and extend the load range for an MTEM electromagnetic transmitter in geological exploration. Unlike a conventional DC/DC converter, the proposed converter can operate in passive soft-switching, single-active soft-switching, or dual-active soft-switching modes depending on the change in load power. The main switches and lagging auxiliary switches of the converter can attain soft-switching over the entire load range. The conduction and switching losses are greatly reduced compared with those of ordinary converters under the action of the cut-off diodes and auxiliary windings coupled to the main transformer in the auxiliary circuits. The conversion efficiency of the proposed converter is significantly improved, especially under light-load conditions. First, the working principle of the proposed converter is analyzed in detail. Second, the relationship between the different operating modes and the load power is given and the design principle of the auxiliary circuit is presented. Finally, the Saber simulation and experimental results verify the feasibility and validity of the converter and a 50 kW prototype is implemented.

Design of a Novel Integrated L-C-T for PSFB ZVS Converters

  • Tian, Jiashen;Gao, Junxia;Zhang, Yiming
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.905-913
    • /
    • 2017
  • To enhance the zero-voltage switching (ZVS) range and power density of the phase-shift full-bridge (PSFB) ZVS converters used in geophysical exploration, an additional resonant inductor is used as a leakage inductance and a blocking capacitor which is equivalent to interlayer capacitance is integrated into a novel integrated inductor-capacitor-transformer (L-C-T). The leakage inductance and equivalent interlayer capacitance of the novel integrated L-C-T are difficult to determine by conventional methods. To address this issue, this paper presents accurate and efficient methods to compute the leakage inductance and equivalent interlayer capacitance. Moreover, the accuracy of this methodology, which is based on electromagnetic energy and Lebedev's method, is verified by an experimental analysis and a finite element analysis (FEA). Taking the problems of the novel integrated L-C-T into consideration, the losses of the integrated L-C-T are analyzed and the temperature rise of the integrated L-C-T is determined by FEA. Finally, a PSFB ZVS converter prototype with the novel integrated L-C-T is designed and tested.

A Study on the Countermeasures to Suppress Harmonics in the Traction Power Supply System (철도 급전시스템에서의 고조파 해석 및 대책 연구)

  • 오광해;이장무;창상훈;한문섭;김길상
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.318-325
    • /
    • 1999
  • Modern AC electric car has PWM(Pulse Width Modulation)-controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit, As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

Analysis of Key Parameters for Inductively Coupled Power Transfer Systems Realized by Detuning Factor in Synchronous Generators

  • Liu, Jinfeng;Li, Kun;Jin, Ningzhi;Iu, Herbert Ho-Ching
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1087-1098
    • /
    • 2019
  • In this paper, a detuning factor (DeFac) method is proposed to design the key parameters for optimizing the transfer power and efficiency of an Inductively Coupled Power Transfer (ICPT) system with primary-secondary side compensation. Depending on the robustness of the system, the DeFac method can guarantee the stability of the transfer power and efficiency of an ICPT system within a certain range of resistive-capacitive or resistive-inductive loads. A MATLAB-Simulink model of a ICPT system was built to assess the system's main evaluation criteria, namely its maximum power ratio (PR) and efficiency, in terms of different approaches. In addition, a magnetic field simulation model was built using Ansoft to specify the leakage flux and current density. Simulation results show that both the maximum PR and efficiency of the ICPT system can reach almost 70% despite the severe detuning imposed by the DeFac method. The system also exhibited low levels of leakage flux and a high current density. Experimental results confirmed the validity and feasibility of an ICPT system using DeFac-designed parameters.

Technical Research on Waveguide-to-Microstrip Transition Using an Inline Structure for Millimeter-Wave Seekers (Inline 구조를 이용한 밀리미터파 탐색기용 도파관-마이크로스트립 전이구조 기술 연구)

  • Park, Sang Woo;Lee, Dong Jae;Song, Sung Chan;Lee, Man Gyu;Kim, Yong Hwan;Kim, Jeong Ryul;Hong, Dong Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.54-59
    • /
    • 2019
  • In this paper, we report on the waveguide-to-microstrip transition with an inline structure for the millimeter band. The waveguide-to-microstrip transition comprises a probe, an inductive line, a ${\lambda}/4$ impedance transformer, and a 50-ohm microstrip line. For the transition design, we optimized the characteristic impedances and lengths of the component parts. The fabricated transition exhibits an insertion loss of 2.1 dB and an input/output return loss of below 13 dB at a millimeter band frequency of 94 GHz.