• 제목/요약/키워드: transformed yeast

검색결과 85건 처리시간 0.022초

돌연변이 식물 및 형질전환된 효모에서 phytochelatin synthase 발현이 살균제 tolclofos-methyl 분해에 미치는 영향 (Effect of Phytochelatin Synthase Expression on Degradation of Fungicide Tolclofos-methyl in Mutant Plant and Transformed yeast)

  • 윤하임;김장억;신재호;김정회;이상만
    • 한국환경농학회지
    • /
    • 제28권4호
    • /
    • pp.409-411
    • /
    • 2009
  • Phytochelatins (PCs) are small-sized peptides synthesized by PC synthase (PCS) using glutathione (GSH) as a substrate, and they play an important role in the detoxification of toxic heavy metals in plants, fission yeast, and other living organisms. Recently, it has been suggested that PCS is also involved in degradation of some xenobiotics including monobromobimane. PCS cleaves the Gly residue from GSH-xenobiotics conjugates resulting in ${\gamma}$-Glu-Cys-xenobiotics, and this is to degraded further. Therefore, our research is focus on whether PCS is also involved in degradation of tolclofos-methyl, an important pesticide which has been used in ginseng cultivated areas. Heterologous expression of Arabidopsis PCS confers tolerance to tolclofos-methyl in yeast. Furthermore, PCS-deficient Cad1-3 Arabidopsis mutant showed high sensitivity to tolclofos-methyl compared with wild-type plants. These results imply that PCS is involved in degradation of tolclofos-methyl as other xenobiotics.

Rice NAC proteins act as homodimers and heterodimers

  • Jeong, Jin Seo;Park, Yeong Taek;Jung, Harin;Park, Su-Hyun;Kim, Ju-Kon
    • Plant Biotechnology Reports
    • /
    • 제3권2호
    • /
    • pp.127-134
    • /
    • 2009
  • Members of the NAM-ATAF-CUC (NAC) protein family are plant-specific transcription factors that contain a highly conserved N-terminal NAC-domain and diverse C-terminal regions. They have been implicated in plant development and abiotic stress responses. To identify interacters of rice NAC-domain proteins (OsNACs), we performed yeast two-hybrid screening of rice cDNA library using OsNAC5 as a bait, and the results showed that OsNAC5 interacts with other OsNACs including itself. To delineate an interacting domain, a series of deletion constructs of four OsNACs were made and transformed into yeast in various combinations. The results revealed that the conserved NAC domain of OsNACs plays a primary role in homodimer and heterodimer formation, and a part of C-terminal sequence is also necessary for the interaction. In vitro pull-down assays using recombinant OsNAC proteins verified the dimer formations, together suggesting that OsNACs may act by forming homodimers and/or heterodimers in plants.

Cloning and Expression of Kluyveromyces fragilis $\beta$-Galactosidase Gene in Saccharomyces cerevisiae

  • Bang, Jeong-Hee;Nam, Doo-H.;Kang, Dae-Ook;Ahn, Jong-Seog;Ryu, Dewey-D.Y.
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권1호
    • /
    • pp.6-13
    • /
    • 1995
  • A gene coding for the $\beta$-galactosidase (lactase) of Kluyveromyces tragilis UCD 55-55 was isolated by complementation in Escherichia coli YMC9. From the plasmid library made from Sau3A-digested chromosomal DNA, one positive clone was selected. The cloned gene for $\beta$-galactosidase was on 7.3 kilobase pair DNA fragment, and a slightly low level of $\beta$-galactosidase enzyme activity was detecied in E. coli. It was also confirmed that the cloned gene comes from K. tragilis by DNA-DNA hybridization and immunochemical blotting experiments. In order to construct a new yeast strain having the metabolic ability for lactose, the cloned gene for K. tragilis $\beta$-galactosidase was inserted in yeast vector YEp24 and YRp17, and transformed into Saccharomyces cerevisiae YNN27 and Ml-2B. The yeast transformants showed the nearly the same $\beta$-galactosidase productivity as level of K. tragilis when uninduced, but these could not utilize lactose as a sole carbon source, presumably due to the lack of lactose transport system. Nevertheless, a slightly higher ethanol productivity was achieved by these transformants than S. cerevisiae or K. tragilis, in the medium containing glucose and lactose.

  • PDF

Expression of Escherichia coli Heat-labile Enterotoxin B Subunit (LTB) in Saccharomyces cerevisiae

  • Rezaee Mohammad Ahangarzadeh;Rezaee Abbas;Moazzeni Seyed Mohammad;Salmanian Ali Hatef;Yasuda Yoko;Tochikubo Kunio;Pirayeh Shahin Najar;Arzanlou Mohsen
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.354-360
    • /
    • 2005
  • Heat-labile enterotoxin B subunit (LTB) of enterotoxigenic Escherichia coli (ETEC) is both a strong mucosal adjuvant and immunogen. It is a subunit vaccine candidate to be used against ETEC-induced diarrhea. It has already been expressed in several bacterial and plant systems. In order to construct yeast expressing vector for the LTB protein, the eltB gene encoding LTB was amplified from a human origin enterotoxigenic E. coli DNA by PCR. The expression plasmid pLTB83 was constructed by inserting the eltB gene into the pYES2 shuttle vector immediately downstream of the GAL1 promoter. The recombinant vector was transformed into S. cerevisiae and was then induced by galactose. The LTB protein was detected in the total soluble protein of the yeast by SDS-PAGE analysis. Quantitative ELISA showed that the maximum amount of LTB protein expressed in the yeast was approximately $1.9\%$ of the total soluble protein. Immunoblotting analysis showed the yeast-derived LTB protein was antigenically indistinguishable from bacterial LTB protein. Since the whole-recombinant yeast has been introduced as a new vaccine formulation the expression of LTB in S. cerevisiae can offer an inexpensive yet effective strategy to protect against ETEC, especially in developing countries where it is needed most.

Interactions between secreted GRA proteins and host cell proteins across the parasitophorous vacuolar membrane in the parasitism of Toxoplasma gondii

  • Ahn, Hye-Jin;Kim, Sehra;Kim, Hee-Eun;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제44권4호
    • /
    • pp.303-312
    • /
    • 2006
  • Interactions between GRA proteins of dense granules in Toxoplasma gondii and host cell proteins were analyzed by yeast two-hybrid technique. The cMyc-GRA fusion proteins expressed from pGBKT7 plasmid in Y187 yeast were bound to host cell proteins from pGADT7-Rec-HeLa cDNA library transformed to AH109 yeast by mating method. By the selection procedures, a total of 939 colonies of the SD/-AHLT culture, 348 colonies of the $X-\alpha-gal$ positive and PCR, 157 colonies of the $X-\beta-gal$ assay were chosen for sequencing the cDNA and finally 90 colonies containing ORF were selected to analyze the interactions. GRA proteins interacted with a variety of host cell proteins such as enzymes, structural and functional proteins of organellar proteins of broad spectrum. Several specific bindings of each GRA protein to host proteins were discussed presumptively the role of GRA proteins after secreting into the parasitophorous vacuoles (PV) and the PV membrane in the parasitism of this parasite.

재조합 효모 세포내에서의 간염백신 생산 (The Production of HBsAg in the Recombinant Yeast Cells)

  • Park, Cha-Yong;Lee, Hei-Chan
    • 한국미생물·생명공학회지
    • /
    • 제14권6호
    • /
    • pp.455-460
    • /
    • 1986
  • 간염 보균자의 혈액으로부터 Dane 입자를 분리하였다. Dane 입자의 핵으로부터 분리해낸 DNA는 $\alpha$-($^{32}$P) dNTP 존재하의 DNA 폴리머레이즈 반응 후 액체 씬틸레이션 카운터와 한천 전기영동 및 가이거 뮐러 카운터에 의하여 간염의 DNA임이 확인되었다. 간염 바이러스에 의한 감염을 막기 위한 백신으로서의 B형 간염 바이러스 표면항원을 생산하기 위하여 산성포스파테이즈 프로모터를 갖는 재조합 프라스미드를 함유하는 효모균주를 사용하였다. 재조합 프라스미드는 pHBV 130 및 pAM 82로부터 제작되었으며 대장균에 변환되어진 후 효모균주에 전달되었다. 간염 표면항원은 조절된 무기 인산 농도하에서 버크홀더 최소배지에서의 저해 해제로 생산되었다. 간염 표면항원의 생산 속도도 조사하였다. 전체 간염 표면항원 활성은 인산이 없는 배지에 옮겨진 뒤 3시간 내지 6시간에서 급격히 증가하였으며 9시간째에 최대에 도달하였다. 인산이 없는 배지에 옮기는 것은 고농도 인산 배지에서의 세포 배양을 6시간동안 수행한 뒤에 하는 것이 최적의 결과를 나타내었다.

  • PDF

Insect Ornithine Decarboxylase (ODC) Complements SPE1 Knock-Out of Yeast Saccharomyces cerevisiae

  • Choi, Soon-Yong;Park, Hee Yun;Paek, Aron;Kim, Gil Seob;Jeong, Seong Eun
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.575-581
    • /
    • 2009
  • Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are essential for cell growth, differentiation, and proliferation. This report presents the characterization of an ODC-encoding cDNA (SlitODC) isolated from a moth species, the tobacco cutworm, Spodoptera litura (Lepidoptera); its expression in a polyamine-deficient strain of yeast, S. cerevisiae; and the recovery in polyamine levels and proliferation rate with the introduction of the insect enzyme. SlitODC encodes 448 amino acid residues, 4 amino acids longer than B. mori ODC that has 71% identity, and has a longer C-terminus, consistent with B. mori ODC, than the reported dipteran enzymes. The null mutant yeast strain in the ODC gene, SPE1, showed remarkably depleted polyamine levels; in putrescine, spermidine, and spermine, the levels were > 7, > 1, and > 4%, respectively, of the levels in the wild-type strain. This consequently caused a significant arrest in cell proliferation of > 4% of the wild-type strain in polyamine-free media. The transformed strain, with the substituted SlitODC for the deleted endogenous ODC, grew and proliferated rapidly at even a higher rate than the wild-type strain. Furthermore, its polyamine content was significantly higher than even that in the wild-type strain as well as the spe1-null mutant, particularly with a very continuously enhanced putrescine level, reflecting no inhibition mechanism operating in the putrescine synthesis step by any corresponding insect ODC antizymes to SlitODC in this yeast system.

YEp 13 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning II. Saccharomyces cerevisiae에서의 발현 (Cloning of Bacillus amyloliquefaciens amylase gene using YEp 13 as a vector II. Expression of cloned amylase gene in Saccharomyces cerevisiae)

  • 김관필;서정훈
    • 한국미생물·생명공학회지
    • /
    • 제14권3호
    • /
    • pp.209-212
    • /
    • 1986
  • YEp 13 plasmid에 B. amyloliquefaciens의 $\alpha$-amylase gene을 cloning시켜서 얻은 hybrid plasmid를 E. coli C 600으로 형질전환시켜서 amylase 활성을 나타내는 균주를 선별하였다. 선별된 E. coli C 600균주를 plasmid추출하여 전기영동해 본 결과 plasmid가 매우 불안정하였으며, 그중 가장 단순한 plasmid band를 지니고 있으며 amylase활성이 강한 E. coli균주를 선별하였다. 선별된 균주의 균체내에 있는 2개의 plasmid DNA를 분리하여 각각의 plasmid를 pTG 17-1, pTG 17-2로 명명하였으며 S. cerevisiae MC 16에서 형질전환이 가능한 pTG 17-2 DNA를 제한효소 EcoRI과 Pst I으로 restriction한 결과 EcoRI으로 처리한 경우는 7.3, 4.8, 2.4 kb인 3개의 분획으로 나타났으며 Pst I으로 처리한 경우는 linear로 14.5kb임을 알았으며 이로써 pTG 17-2 plasmid의 size가 약 14kb임을 알았다. 또한 E.coli균체내에서의 ampicillin sensitive로써 이 plasmid의 ampicillin resistance site가 결실되었음을 알았고 효모의 형진전환체로 부터의 $\alpha$-amylase는 균체외로 분비되지 않았고 효모균체내의 $\alpha$-amylase는 Somogyi-Nelson방법과 Agar diffusion 방법으로 확인하였다.

  • PDF

박테리오신 OR-7을 생산하는 항균 효모의 제작 (Construction of A Bacteriocidal Yeast Producing Bacteriocin OR-7)

  • 이옥희;장민경;이동근;이재화;하종명;하배진;안익용;조동인;이상현
    • 한국미생물·생명공학회지
    • /
    • 제36권2호
    • /
    • pp.101-105
    • /
    • 2008
  • 박테리오신의 일종인 OR-7을 생산하는 효모의 제작을 위하여 180 bp 길이의 개시코돈과 종지코돈을 포함하는 OR-7의 유전자를 합성하여 효모 발현 vector pAUR123에 클로닝하여 재조합 DNA를 작성하였다. 재조합 DNA로 형질전환된 효모가 박테리오신 OR-7 생산유전자를 가지고 있음을 효모로부터 분리된 플라스미드를 이용한 PCR로 확인하였고, OR-7의 생산은 SDS-PAGE로 확인하였다. 형질전환 효모는 그람양성 대표세균인 고초균(B. subtiliws)과 그람음성 장내세균인 대장균(E. coli)에 대해 항균활성을 나타냈다. 또한, 농흉이나 중이염의 원인이 되는 녹농균(P. aeruginosa)과 식중독균(C. jejuni)에 대해서도 항균활성을 나타냈다. 이 연구의 결과로 부패하기 쉬운 식품들의 보존성을 향상시키기 위한 보존제 대체물질 또는 가축 사료에서 병원균의 생육을 저해하기 위한 항생제 대체물질로 사용할 수 있는 박테리오신을 산업적으로 생산할 수 있는 효모세포를 제작하였다.

An Efficient System for the Expression and Purification of Yeast Geranylgeranyl Protein Transferase Type I

  • Kim, Hyun-Kyung;Kim, Young-Ah;Yang, Chul-Hak
    • BMB Reports
    • /
    • 제31권1호
    • /
    • pp.77-82
    • /
    • 1998
  • To purify the geranylgeranyl protein transferase type I (GGPT-I) efficiently, a gene expression system using the pGEX-4T-1 vector was constructed. The cal1 gene, encoding the ${\beta}$ subunit of GGPT-I, was subcloned into the pGEX-4T-1 vector and co-transformed into E. coli cells harboring the ram2 gene, the ${\alpha}$ subunit gene of GGPT-I. GGPT-I was highly expressed as a fusion protein with glutathione S-transferase (GST) in E. coli, purified to homogeneity by glutathione-agarose affinity chromatography, and the GST moiety was excised by thrombin treatment. The purified yeast GGPT-I showed a dose-dependent increase in the transferase activity, and its apparent $K_m$ value for an undecapeptide fused with GST (GST-PEP) was $0.66\;{\mu}M$ and the apparent value for geranylgeranyl pyrophosphate (GGPP) was $0.071\;{\mu}M$.

  • PDF