• 제목/요약/키워드: transformation-based learning

검색결과 206건 처리시간 0.02초

Research of Adaptive Transformation Method Based on Webpage Semantic Features for Small-Screen Terminals

  • Li, Hao;Liu, Qingtang;Hu, Min;Zhu, Xiaoliang
    • ETRI Journal
    • /
    • 제35권5호
    • /
    • pp.900-910
    • /
    • 2013
  • Small-screen mobile terminals have difficulty accessing existing Web resources designed for large-screen devices. This paper presents an adaptive transformation method based on webpage semantic features to solve this problem. According to the text density and link density features of the webpages, the webpages are divided into two types: index and content. Our method uses an index-based webpage transformation algorithm and a content-based webpage transformation algorithm. Experiment results demonstrate that our adaptive transformation method is not dependent on specific software and webpage templates, and it is capable of enhancing Web content adaptation on small-screen terminals.

A Transformation-Based Learning Method on Generating Korean Standard Pronunciation

  • Kim, Dong-Sung;Roh, Chang-Hwa
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.241-248
    • /
    • 2007
  • In this paper, we propose a Transformation-Based Learning (TBL) method on generating the Korean standard pronunciation. Previous studies on the phonological processing have been focused on the phonological rule applications and the finite state automata (Johnson 1984; Kaplan and Kay 1994; Koskenniemi 1983; Bird 1995). In case of Korean computational phonology, some former researches have approached the phonological rule based pronunciation generation system (Lee et al. 2005; Lee 1998). This study suggests a corpus-based and data-oriented rule learning method on generating Korean standard pronunciation. In order to substituting rule-based generation with corpus-based one, an aligned corpus between an input and its pronunciation counterpart has been devised. We conducted an experiment on generating the standard pronunciation with the TBL algorithm, based on this aligned corpus.

  • PDF

경량화된 임베디드 시스템에서 역 원근 변환 및 머신 러닝 기반 차선 검출 (Lane Detection Based on Inverse Perspective Transformation and Machine Learning in Lightweight Embedded System)

  • 홍성훈;박대진
    • 대한임베디드공학회논문지
    • /
    • 제17권1호
    • /
    • pp.41-49
    • /
    • 2022
  • This paper proposes a novel lane detection algorithm based on inverse perspective transformation and machine learning in lightweight embedded system. The inverse perspective transformation method is presented for obtaining a bird's-eye view of the scene from a perspective image to remove perspective effects. This method requires only the internal and external parameters of the camera without a homography matrix with 8 degrees of freedom (DoF) that maps the points in one image to the corresponding points in the other image. To improve the accuracy and speed of lane detection in complex road environments, machine learning algorithm that has passed the first classifier is used. Before using machine learning, we apply a meaningful first classifier to the lane detection to improve the detection speed. The first classifier is applied in the bird's-eye view image to determine lane regions. A lane region passed the first classifier is detected more accurately through machine learning. The system has been tested through the driving video of the vehicle in embedded system. The experimental results show that the proposed method works well in various road environments and meet the real-time requirements. As a result, its lane detection speed is about 3.85 times faster than edge-based lane detection, and its detection accuracy is better than edge-based lane detection.

디지털 트랜스포메이션 기반 학습모델 연구 (A Study on the Learning Model Based on Digital Transformation)

  • 이진구;이재영;정일찬;김미화
    • 한국콘텐츠학회논문지
    • /
    • 제22권10호
    • /
    • pp.765-777
    • /
    • 2022
  • 본 연구의 목적은 급격히 변화하는 환경 속에서 대학이 경쟁력을 가지기 위해 학습 디지털 트랜스포메이션과 관련된 이론 및 사례를 기반으로 대학에서 활용 가능한 디지털 트랜스포메이션 기반 학습모델을 제시하는 것이다. 이를 위해 기초적인 문헌연구와 사례연구, 전문가 초점집단면접(Focus Group Interview)이 진행되었으며 위 연구방법들을 통해 도출된 학습모델 관련 시사점은 다음과 같다. 국내외에서 관련 분야에 두각을 나타내는 대학들은 빅 데이터를 기반으로 학습분석을 대시보드 구현, 예측 모델 개발, 적응형 학습 지원 등에 활발하게 사용하고 있으며, 첨단 에듀테크를 수업에 적극적으로 도입하여 성과를 내고 있다. 또한 국내 대학이 당면한 현실적인 문제와 애로사항 및 현재 K대학이 당면한 디지털 트랜스포메이션 구현 관련 문제점과 기대 사항들도 확인되었다. 이 시사점들을 바탕으로 본 연구는 K대학의 디지털 트랜스포메이션 기반 학습모델을 개발하였다. 이 모델은 진단, 추천, 학습, 성공의 4개 차원으로 구성되어 있으며 학생이 이 모델을 통해 개인의 성공에 필요한 다양한 학습 과정을 진단 및 추천받아 학습을 진행하고, 학습 성과를 체계적으로 관리해 성공할 수 있도록 한다. 마지막으로 연구결과에 대한 학문적 그리고 실무적 시사점이 논의되었다.

한국어 비교 문장 유형 분류를 위한 변환 기반 학습 기법 (Transformation-based Learning for Korean Comparative Sentence Classification)

  • 양선;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권2호
    • /
    • pp.155-160
    • /
    • 2010
  • 본 논문은 비교마이닝(comparison mining)의 일환인 비교 문장 유형 자동 분류에 관하여 연구한다. 비교마이닝은 텍스트 마이닝의 한 분야로서 대용량의 텍스트를 대상으로 비교 관계를 분석하며, 크게 세 단계의 과정을 거치게 되는데 첫 번째 단계는 대용량의 문서에서 비교 문장만을 식별 후 추출해 내는 과정이고, 두 번째 단계는 추출된 비교 문장들을 비교 유형별로 분류하는 과정이며, 앞의 두 선행 과정이 끝나면 유형별로 비교 속성을 추출 및 비교 관계를 분석하는 세 번째 단계를 수행하게 된다. 본 연구에서는 변환 기반 학습(transformation-based learning) 기법을 이용하여 비교 문장들을 일곱 가지의 유형으로 자동 분류하는 두 번째 과제를 수행한다. 자연어 처리 분야 여러 부문에서 사용되고 있는 변환기반 학습은 오류를 감소시키는 최적의 규칙을 자동으로 생성하여 정답을 찾아가는 규칙 기반 학습 방법이다. 웹상의 다양한 도메인에서 추출된 비교 문장들을 대상으로 유형 분류를 수행한 결과 정확도 80.01%의 성능으로 일곱 가지 유형을 분류할 수 있었다.

Automated ground penetrating radar B-scan detection enhanced by data augmentation techniques

  • Donghwi Kim;Jihoon Kim;Heejung Youn
    • Geomechanics and Engineering
    • /
    • 제38권1호
    • /
    • pp.29-44
    • /
    • 2024
  • This research investigates the effectiveness of data augmentation techniques in the automated analysis of B-scan images from ground-penetrating radar (GPR) using deep learning. In spite of the growing interest in automating GPR data analysis and advancements in deep learning for image classification and object detection, many deep learning-based GPR data analysis studies have been limited by the availability of large, diverse GPR datasets. Data augmentation techniques are widely used in deep learning to improve model performance. In this study, we applied four data augmentation techniques (geometric transformation, color-space transformation, noise injection, and applying kernel filter) to the GPR datasets obtained from a testbed. A deep learning model for GPR data analysis was developed using three models (Faster R-CNN ResNet, SSD ResNet, and EfficientDet) based on transfer learning. It was found that data augmentation significantly enhances model performance across all cases, with the mAP and AR for the Faster R-CNN ResNet model increasing by approximately 4%, achieving a maximum mAP (Intersection over Union = 0.5:1.0) of 87.5% and maximum AR of 90.5%. These results highlight the importance of data augmentation in improving the robustness and accuracy of deep learning models for GPR B-scan analysis. The enhanced detection capabilities achieved through these techniques contribute to more reliable subsurface investigations in geotechnical engineering.

이진 분류를 위하여 거리계산을 이용한 특징 변환 기반의 가중된 최소 자승법 (Weighted Least Squares Based on Feature Transformation using Distance Computation for Binary Classification)

  • 장세인;박충식
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.219-224
    • /
    • 2020
  • 이진 분류(binary classification)는 머신러닝(machine learning) 분야에서 많이 다루어진 주제이다. 게다가 이진 분류는 다중 분류로 쉽게 발전될 수 있는 중요한 분야이다. 머신러닝 방법들을 적용할 때에 전처리(preprocessing)이나 특징 추출(feature extraction)과 같은 작업이 필수적이다. 이는 분류기 성능을 향상시키기 위한 중요한 작업이다. 본 논문에서는 가중된 최소 자승법을 기반으로 새로운 머신러닝 방법을 제안한다. 또한, 특징 변환시킬 수 있는 새로운 가중치 계산 방법을 제안한다. 이를 통해 특징 변환과 동시에 학습을 진행할 수 있는 방법을 제안한다. 본 제안을 다섯 개의 머신러닝 데이터베이스에서 실험을 진행하였으며 이 데이터베이스에서 우수한 성능을 얻을 수 있었다.

딥러닝을 이용하여 진동 응답 기반 비선형 변환 접근법을 적용한 단일 랩 조인트의 접착 면적 탐지 시스템 (Adhesive Area Detection System of Single-Lap Joint Using Vibration-Response-Based Nonlinear Transformation Approach for Deep Learning)

  • 김민제;김동윤;윤길호
    • 한국전산구조공학회논문집
    • /
    • 제36권1호
    • /
    • pp.57-65
    • /
    • 2023
  • 본 연구는 딥러닝을 위한 비선형 변환 접근법을 사용하여 Single-lap joint의 접착 영역을 조사하기 위한 진동 응답 기반 탐지 시스템을 제시한다. 산업 혹은 공학 분야에서 분해가 쉽지 않은 구조 내에 보이지 않는 부분의 상태와 접착된 구조의 접착 부위 상태를 알기 어려운 문제가 있다. 이러한 문제를 해결하기 위해 본 연구는 비선형 변환을 이용하여 기준 시편의 진동 응답으로 다양한 시편의 접착 면적을 조사하는 탐지 방법을 제안한다. 이 연구에서는 CNN 기반 딥러닝으로 진동 특성을 파악하기 위해 비선형 변환을 적용한 주파수 응답 함수를 사용했고 분류를 위해 가상의 스펙트로그램을 사용했다. 또한, 제시된 방법을 검증하기 위해 알루미늄, 탄소섬유복합재 그리고 초고분자량 폴리에틸렌 시편에 대한 진동 실험, 분석적 해, 유한요소해석을 수행했다.

MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법 (An Input Transformation with MFCCs and CNN Learning Based Robust Bearing Fault Diagnosis Method for Various Working Conditions)

  • 서양진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권4호
    • /
    • pp.179-188
    • /
    • 2022
  • 기계의 주요 부품인 베어링 결함 진단에 딥러닝을 활용하는 연구가 활발하게 진행되어 좋은 성능을 달성하였으나, 학습 데이터와 테스트 데이터의 운영 환경 차이로 인해 기계가 실제로 가동되는 환경에서는 성능 저하가 발생하는 문제가 있다. 학습 데이터와 테스트 데이터의 분포 차이 문제를 다루는 방법으로 데이터 적응이 제안되어 좋은 결과를 보여주고 있으나, 각 방법이 가정하고 있는 특정 적용 시나리오를 벗어나기 어렵다는 제약이 있다. 이에 본 연구는 MFCCs를 이용한 입력 데이터의 변환과 간단한 CNN 구조를 이용해 원시 도메인 데이터로부터 생성된 모델에 대해 추가적인 학습이나 조정 없이 타겟 도메인 데이터에 대한 테스트를 강건하게 수행하는 방법을 제안하였으며, 대표적인 베어링 결함 진단 데이터셋인 CWRU 베어링 데이터를 이용해 제안한 방법에 대한 실험 및 분석을 수행하였다. 실험 결과 전이 학습 기반의 방법들과 대등한 성능을 보였으며, 입력 변환 기반의 베이스라인 방법보다는 최소 15% 정도의 높은 성능을 달성하였다.

Remote Distance Measurement from a Single Image by Automatic Detection and Perspective Correction

  • Layek, Md Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.3981-4004
    • /
    • 2019
  • This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.