• Title/Summary/Keyword: transformation of water waves

Search Result 70, Processing Time 0.024 seconds

Numerical Simulation of Longshore Current due to Random Sea Waves (불규칙파에 의한 연안류의 수치계산)

  • 권정곤;양윤모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.72-82
    • /
    • 1992
  • To accurately estimate nearshore current in shallow water regions. it is necessary to investigate the irregular wave transformation characteristics and radiation stress produced by random sea waves. This research is to investigate the application or the individual wave Analysis Method. the Component Wave Analysis Method and Representative Wave Analysis Method in the shallow water region. These methods were estimated by wave shallowing transformation when the waves propagate from deep water to shallow water region b)r generating regular waves, two component waves and irregular waves (Bretschneider-Mitsuyasu type). That is, the Indivisual Wave Analysis Method is to investigate from the viewpoint of shallow water transformation of wave statistical characteristics and their zero-down-crossing waves (wave height period and wave celerity). And the component Wave Analysis Method is to investigate from the view point of shallow water transformation of basic frequency component wave and their interference frequency component wave. In addition, this research is to compare the measured mean water level elevation with the calculated one from radiation stress of irreguar waves that is assumed in the three methods above.

  • PDF

Investigation of Importance of Evanescent Modes in Predicting the Transformation of Water Waves by the Linear Wave Theory: 2. Numerical Experiments (선형파 이론에 의한 파랑변형 예측시 소멸파 성분의 중요성 검토 2. 수치 실험)

  • 이창훈;조대희;조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2003
  • The magnitude of evanescent modes in terms of dynamics it investigated in case that the transformation of water waves is predicted by the linear wave theory. For the waves propagating over two steps, the eigenfunction expansion method is used to predict the amplitudes of reflected and transmitted waves by the component of evanescent modes as well as propagating modes. Then. the relative importance of evanescent modes to the propagating modes is investigated. The numerical experiments find that the evanescent modes are pronounced at the relative water depth of k$_1$h$_1$=0.11$\pi$ and the water depth ratio of h$_2$/h$_1$ close to zero.

Investigation of Importance of Evanescent Modes in Predicting the Transformation of Water Waves by the Linear Wave Theory: 1. Derivation of Equations of Wave Energy (선형파 이론에 의한 파랑변형 예측 시 소멸파 성분의 중요성 검토: 1. 에너지 식 유도)

  • 이창훈;조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.282-285
    • /
    • 2002
  • The magnitude of evanescent modes in terms of dynamics is investigated in case that the transformation of water waves is predicted using the linear wave theory. In other words, derivation is made of both the kinetic and potential wave energies of evanescent modes as welt as propagating modes. The evanescent modes consist of compound components of propagating and evanescent modes, those of identically equal evanescent modes, and those of identically different evanescent modes. The wave energy per a horizontal distance decreases exponentially with the distance.

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF

Irregular Wave Model for Youngil Bay (영일만의 불규칙파 모형)

  • 정신택;채장원;이동영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.146-150
    • /
    • 1996
  • The waves are most important dynamical factors for the analyses of structural stability and topographical changes on coastal engineering field. However, wind-generated waves are very irregular in shape and transformed through refraction, diffraction and shoaling when they propagate into shallow water where bottom topography and water depth vary significantly. Recently, Vincent and Briggs (1989) reported hydraulic model experiments for the transformation of monochromatic and directionally-spread irregular waves passing over a submerged elliptical mound. They concluded that for the case of combined refraction-diffraction of waves by a shoal, the propagation characteristics of the irregular and equivalent regular wave conditions can be vastly different. On the irregular wave transformation have been made theoretical and numerical studies for several years. Although theoretical and laboratory studies on wave transformation have progressed considerably, field measurement and comparison of numerical results with related theories are still necessary for the prediction of the phenomena in reality. In this study, field measurement of both incident and transformed waves in Youngil Bay were made using various kinds of equipments, and numerical computations were made on the transformed frequency spectra of large waves propagating over the shoal using Chae and Jeong's (1992) elliptic model. It is shown that this model results agree very well with field data, and thus the applicability of the model is now validated.

  • PDF

Nonlinear Interaction between the Permeable Submerged Breakwater and Third Order Stokes Waves (사석잠제와 Stokes 3차파와의 비선형간섭에 관한 연구)

  • Jeong, Yeon-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.223-234
    • /
    • 1998
  • Recently, the interests of the construction of the permeable submerged breakwaters have been increased to preserve and to improve the coastal environment, and to control the incident waves and littoral transport. It is very important to predict the wave transformation precisely over the permeable submerged breakwaters. This study discusses nonlinear wave transformation and characteristics by using BEM based on the frequency domain method of the 3rd-order Stokes waves. The Dupuit-Forchheimer formula is applied to the analysis of the fluid resistance of rubble stones, and the equation about equivalent linear frictional coefficient is newly modified based on the Lorentz's condition for the equivalent work. The numerical results are compared with the experimental ones for verification. These two results give a close agreement each other. It is confirmed that the present method of the 3rd-order Stokes waves estimates more precisely than that of the 2nd-order Stokes waves.

  • PDF

NUMERICAL SIMULATION OF TWO-DIMENSIONAL FREE-SURFACE FLOW AND WAVE TRANSFORMATION OVER CONSTANT-SLOPE BOTTOM TOPOGRAPHY

  • DIMAKOPOULOS AGGELOS S;DIMAS ATHANASSIOS A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.842-845
    • /
    • 2005
  • A method for the numerical simulation of two-dimensional free-surface flow resulting from the propagation of regular gravity waves over topography with arbitrary bottom shape is presented. The method is based on the numerical solution of the Euler equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow conditions using a hybrid finite-differences and spectral-method scheme. The formulation includes a boundary-fitted transformation, and is suitable for extension to incorporate large-eddy simulation (LES) and large-wave simulation (LWS) terms for turbulence and breaking wave modeling, respectively. Results are presented for the simulation of the free-surface flow over two different bottom topographies, with constant slope values of 1:10 and 1:20, two different inflow wave lengths and two different inflow wave heights. An absorption outflow zone is utilized and the results indicate minimum wave reflection from the outflow boundary. Over the bottom slope, lengths of waves in the linear regime are modified according to linear theory dispersion, while wave heights remain more or less unchanged. For waves in the nonlinear regime, wave lengths are becoming shorter, while the free surface elevation deviates from its initial sinusoidal shape.

  • PDF

Systematic Approach for Predicting Irregular Wave Transformation (불규칙파랑의 계통적 취급수법)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.83-95
    • /
    • 1990
  • It can be assumed that the ocean waves consist of many independent pure sinusoidal components which progress in arbitrary directions. To analyze irregular sea waves, both the spectrum method and the individual wave method have been used. The spectral approach is valid in the region where the water depth is deep and the linear property of velocity distribution is predominent, while the individual wave analysis method in the region where the water depth is shallow and the wave nonlinearity is significant. Therefore, to investigate the irregular wave transformation from the deep water to the shallow water region, it is necessary to relate the frequency spectrum which is estimated by the spectrum analysis method to the i oint probability distribution of wave height, period and direction affected by the boundary condition of the individual wave analysis method. It also becomes important to define the region where both methods can be applied. This study is a part of investigation to establish a systematic approach for analyzing the irregular wave transformation. The region where the spectral approach can be applied is discussed by earring out the experiments on the irregular wave transformation in the two-dimensional wave tank together with the numerical simulation. The applicability of the individual wave analysis method for predicting irregular wave transformation including wave shoaling and breaking and the relation between frequency spectrum and joint probability distribution of wave height and period are also investigated through the laboratory experiment and numerical simualtion.

  • PDF

Transformation of Irregular Waves in Shallow Water (천해에서 불규칙파의 변이)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.212-220
    • /
    • 1993
  • A numerical model for the transformation of irregular waves in a coastal area is developed, which takes account of shoaling, refraction, diffraction, bottom friction and wave breaking. The governing equations are the usual energy conservation equation and kinematic conservation equations, but to consider the diffraction effects additional terms are included in the usual kinematic conservation or wave number equations. A linear superposition technique is used to represent the spectral formation. and an explicit formula is developed for the estimation of friction factor of irregular waves. A breaking criterion of component waves, which is the modified form of the Kitaigorodskii saturation relation, is employed to restrict the growth of shoaling waves in very shallow waters. The model was applied to a laboratory test and satisfactory agreement was obtained between the computation and measurement.

  • PDF

Transformation of Regular Waves on Currents in Water of Slowly Varying Depth-Theoretical Study (흐름이 존재하는 완경사 해역에서의 파랑변형-이론적 고찰)

  • 채장원;정신택;엄대기;안한수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1989
  • Theoretical studies have been made to analyze combined refraction diffraction of the wind waves propagating on a large scale current in water of varying depth. The governing equation for monochromatic waves was derived through splitting a mild slope equation into two equations. A numerical model is developed using finite difference scheme which is computationally very efficient for modelling large area. Numerical examples concerning the interactions between waves and rip currents over a gentle slope are presented, in which the current effects on the wave diffraction in the caustic region are closely examined.

  • PDF