• Title/Summary/Keyword: transformation learning

Search Result 343, Processing Time 0.03 seconds

A Study of the Sequence of Figure Transformation Learning (도형의 변환학습의 순차성 고찰)

  • Park Sung Teak
    • The Mathematical Education
    • /
    • v.17 no.2
    • /
    • pp.1-13
    • /
    • 1979
  • This study aimed at studying the sequence of the Figure Transformation Learning, inquiring relationship among these transformations and then researching whether there is the difference of the learning ability or not between by teaching them as it is independent and by teaching them as it is contains. (Hypothesis 1) It may be more effective to teach The Sequence of Transformation Learning by beginning with peculiar field, ending with general field than vice versa At the result of verification-C $R_{M}$=2.59, 0.005$R_{M}$=5.19, p<0.005-significant difference appeared. It is proved more effective to teach the Figure Transformation Learning the way it contains than the way it is independent. Synthesizing two hypothesises of the above, the conclusion is following The Figure Transformation Learning should be taught by beginning with peculiar field. ending with general field (congruent transformationlongrightarrowsimilar transformationlongrightarrowprojective transformationlongrightarrowtopological transformation). To teach it the way it contains is more effective.ive.

  • PDF

Teaching-Learning Method for Plane Transformation Geometry with Mathematica (평면변환기하에 있어서 Mathematica를 이용한 교수-학습방법)

  • 김향숙
    • The Mathematical Education
    • /
    • v.40 no.1
    • /
    • pp.93-102
    • /
    • 2001
  • The world we live in is called the age of information. Thus communication and computers are doing the central role in it. When one studies the mathematical problem, the use of tools such as computers, calculators and technology is available for all students, and then students are actively engaged in reasoning, communicating, problem solving, and making connections with mathematics, between mathematics and other disciplines. The use of technology extends to include computer algebra systems, spreadsheets, dynamic geometry software and the Internet and help active learning of students by analyzing data and realizing mathematical models visually. In this paper, we explain concepts of transformation, linear transformation, congruence transformation and homothety, and introduce interesting, meaningful and visual models for teaching of a plane transformation geomeoy which are obtained by using Mathematica. Moreover, this study will show how to visualize linear transformation for student's better understanding in teaching a plane transformation geometry in classroom. New development of these kinds of teaching-learning methods can simulate student's curiosity about mathematics and their interest. Therefore these models will give teachers the active teaching and also give students the successful loaming for obtaining the concept of linear transformation.

  • PDF

Study on predictive model and mechanism analysis for martensite transformation temperatures through explainable artificial intelligence (설명가능한 인공지능을 통한 마르텐사이트 변태 온도 예측 모델 및 거동 분석 연구)

  • Junhyub Jeon;Seung Bae Son;Jae-Gil Jung;Seok-Jae Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.103-113
    • /
    • 2024
  • Martensite volume fraction significantly affects the mechanical properties of alloy steels. Martensite start temperature (Ms), transformation temperature for martensite 50 vol.% (M50), and transformation temperature for martensite 90 vol.% (M90) are important transformation temperatures to control the martensite phase fraction. Several researchers proposed empirical equations and machine learning models to predict the Ms temperature. These numerical approaches can easily predict the Ms temperature without additional experiment and cost. However, to control martensite phase fraction more precisely, we need to reduce prediction error of the Ms model and propose prediction models for other martensite transformation temperatures (M50, M90). In the present study, machine learning model was applied to suggest the predictive model for the Ms, M50, M90 temperatures. To explain prediction mechanisms and suggest feature importance on martensite transformation temperature of machine learning models, the explainable artificial intelligence (XAI) is employed. Random forest regression (RFR) showed the best performance for predicting the Ms, M50, M90 temperatures using different machine learning models. The feature importance was proposed and the prediction mechanisms were discussed by XAI.

A Lightweight Deep Learning Model for Text Detection in Fashion Design Sketch Images for Digital Transformation

  • Ju-Seok Shin;Hyun-Woo Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.17-25
    • /
    • 2023
  • In this paper, we propose a lightweight deep learning architecture tailored for efficient text detection in fashion design sketch images. Given the increasing prominence of Digital Transformation in the fashion industry, there is a growing emphasis on harnessing digital tools for creating fashion design sketches. As digitization becomes more pervasive in the fashion design process, the initial stages of text detection and recognition take on pivotal roles. In this study, a lightweight network was designed by building upon existing text detection deep learning models, taking into consideration the unique characteristics of apparel design drawings. Additionally, a separately collected dataset of apparel design drawings was added to train the deep learning model. Experimental results underscore the superior performance of our proposed deep learning model, outperforming existing text detection models by approximately 20% when applied to fashion design sketch images. As a result, this paper is expected to contribute to the Digital Transformation in the field of clothing design by means of research on optimizing deep learning models and detecting specialized text information.

Research of Adaptive Transformation Method Based on Webpage Semantic Features for Small-Screen Terminals

  • Li, Hao;Liu, Qingtang;Hu, Min;Zhu, Xiaoliang
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.900-910
    • /
    • 2013
  • Small-screen mobile terminals have difficulty accessing existing Web resources designed for large-screen devices. This paper presents an adaptive transformation method based on webpage semantic features to solve this problem. According to the text density and link density features of the webpages, the webpages are divided into two types: index and content. Our method uses an index-based webpage transformation algorithm and a content-based webpage transformation algorithm. Experiment results demonstrate that our adaptive transformation method is not dependent on specific software and webpage templates, and it is capable of enhancing Web content adaptation on small-screen terminals.

Model Transformation and Inference of Machine Learning using Open Neural Network Format (오픈신경망 포맷을 이용한 기계학습 모델 변환 및 추론)

  • Kim, Seon-Min;Han, Byunghyun;Heo, Junyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.107-114
    • /
    • 2021
  • Recently artificial intelligence technology has been introduced in various fields and various machine learning models have been operated in various frameworks as academic interest has increased. However, these frameworks have different data formats, which lack interoperability, and to overcome this, the open neural network exchange format, ONNX, has been proposed. In this paper we describe how to transform multiple machine learning models to ONNX, and propose algorithms and inference systems that can determine machine learning techniques in an integrated ONNX format. Furthermore we compare the inference results of the models before and after the ONNX transformation, showing that there is no loss or performance degradation of the learning results between the ONNX transformation.

Entrepreneurial Learning and Indian Tech Startup Survival: An Empirical Investigation

  • Krishna, HS
    • Asian Journal of Innovation and Policy
    • /
    • v.7 no.1
    • /
    • pp.55-78
    • /
    • 2018
  • This paper investigates the linkage between the mode of transformation of entrepreneurial learning into outcomes and the subsequent impact of these learning outcomes in enhancing the survival of high-tech startups in India. The study uses data from 45 high-tech startups headquartered across different locations in India for the purpose of analysis. Survival Analysis of the data is conducted to determine which mode of learning transformation and what type of en trepreneurial decision making preference have a significant influence on the survival of Indian high-tech startups and to what extent do they impact their survival. The results indicate that entrepreneur's prior startup experience, explorative mode of learning transformation, causal decision making of the entrepreneur and availability of funding for the startup as the key factors that reduce the time to survival of Indian high-tech startups. They also provide key insights on how these factors impact the startup survival in this region.

A Study on the Learning Model Based on Digital Transformation (디지털 트랜스포메이션 기반 학습모델 연구)

  • Lee, Jin Gu;Lee, Jae Young;Jung, Il Chan;Kim, Mi Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.765-777
    • /
    • 2022
  • The purpose of this study is to present a digital transformation-based learning model that can be used in universities based on learning digital transformation in order f to be competitive in a rapidly changing environment. Literature review, case study, and focus group interview were conducted and the implications for the learning model from these are as follows. Universities that stand out in related fields are actively using learning analysis to implement dashboards, develop predictive models, and support adaptive learning based on big data, They also have actively introduced advanced edutech to classes. In addition, problems and difficulties faced by other universities and K University when implementing digital transformation were also confirmed. Based on these findings, a digital transformation-based learning model of K University was developed. This model consists of four dimensions: diagnosis, recommendation, learning, and success. It allows students to proceed with learning by diagnosing and recommending various learning processes necessary for individual success, and systematically managing learning outcomes. Finally, academic and practical implications about the research results were discussed.

Lane Detection Based on Inverse Perspective Transformation and Machine Learning in Lightweight Embedded System (경량화된 임베디드 시스템에서 역 원근 변환 및 머신 러닝 기반 차선 검출)

  • Hong, Sunghoon;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • This paper proposes a novel lane detection algorithm based on inverse perspective transformation and machine learning in lightweight embedded system. The inverse perspective transformation method is presented for obtaining a bird's-eye view of the scene from a perspective image to remove perspective effects. This method requires only the internal and external parameters of the camera without a homography matrix with 8 degrees of freedom (DoF) that maps the points in one image to the corresponding points in the other image. To improve the accuracy and speed of lane detection in complex road environments, machine learning algorithm that has passed the first classifier is used. Before using machine learning, we apply a meaningful first classifier to the lane detection to improve the detection speed. The first classifier is applied in the bird's-eye view image to determine lane regions. A lane region passed the first classifier is detected more accurately through machine learning. The system has been tested through the driving video of the vehicle in embedded system. The experimental results show that the proposed method works well in various road environments and meet the real-time requirements. As a result, its lane detection speed is about 3.85 times faster than edge-based lane detection, and its detection accuracy is better than edge-based lane detection.

A Transformation-Based Learning Method on Generating Korean Standard Pronunciation

  • Kim, Dong-Sung;Roh, Chang-Hwa
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.241-248
    • /
    • 2007
  • In this paper, we propose a Transformation-Based Learning (TBL) method on generating the Korean standard pronunciation. Previous studies on the phonological processing have been focused on the phonological rule applications and the finite state automata (Johnson 1984; Kaplan and Kay 1994; Koskenniemi 1983; Bird 1995). In case of Korean computational phonology, some former researches have approached the phonological rule based pronunciation generation system (Lee et al. 2005; Lee 1998). This study suggests a corpus-based and data-oriented rule learning method on generating Korean standard pronunciation. In order to substituting rule-based generation with corpus-based one, an aligned corpus between an input and its pronunciation counterpart has been devised. We conducted an experiment on generating the standard pronunciation with the TBL algorithm, based on this aligned corpus.

  • PDF