• Title/Summary/Keyword: transfinite induction and recursion

Search Result 1, Processing Time 0.015 seconds

MAXIMAL INVARIANCE OF TOPOLOGICALLY ALMOST CONTINUOUS ITERATIVE DYNAMICS

  • Kahng, Byungik
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.105-127
    • /
    • 2022
  • It is known that the maximal invariant set of a continuous iterative dynamical system in a compact Hausdorff space is equal to the intersection of its forward image sets, which we will call the first minimal image set. In this article, we investigate the corresponding relation for a class of discontinuous self maps that are on the verge of continuity, or topologically almost continuous endomorphisms. We prove that the iterative dynamics of a topologically almost continuous endomorphisms yields a chain of minimal image sets that attains a unique transfinite length, which we call the maximal invariance order, as it stabilizes itself at the maximal invariant set. We prove the converse, too. Given ordinal number ξ, there exists a topologically almost continuous endomorphism f on a compact Hausdorff space X with the maximal invariance order ξ. We also discuss some further results regarding the maximal invariance order as more layers of topological restrictions are added.