Browse > Article
http://dx.doi.org/10.4134/JKMS.j210201

MAXIMAL INVARIANCE OF TOPOLOGICALLY ALMOST CONTINUOUS ITERATIVE DYNAMICS  

Kahng, Byungik (Department of Mathematics and Information Sciences University of North Texas at Dallas)
Publication Information
Journal of the Korean Mathematical Society / v.59, no.1, 2022 , pp. 105-127 More about this Journal
Abstract
It is known that the maximal invariant set of a continuous iterative dynamical system in a compact Hausdorff space is equal to the intersection of its forward image sets, which we will call the first minimal image set. In this article, we investigate the corresponding relation for a class of discontinuous self maps that are on the verge of continuity, or topologically almost continuous endomorphisms. We prove that the iterative dynamics of a topologically almost continuous endomorphisms yields a chain of minimal image sets that attains a unique transfinite length, which we call the maximal invariance order, as it stabilizes itself at the maximal invariant set. We prove the converse, too. Given ordinal number ξ, there exists a topologically almost continuous endomorphism f on a compact Hausdorff space X with the maximal invariance order ξ. We also discuss some further results regarding the maximal invariance order as more layers of topological restrictions are added.
Keywords
Maximal invariant set; discontinuous dynamics; ordinal numbers; transfinite induction and recursion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Goetz, Dynamics of a piecewise rotation, Discrete Contin. Dynam. Systems 4 (1998), no. 4, 593-608. https://doi.org/10.3934/dcds.1998.4.593   DOI
2 A. Goetz and M. Mendes, Piecewise rotations: bifurcations, attractors and symmetries, in Bifurcation, symmetry and patterns (Porto, 2000), 157-165, Trends Math, Birkhauser, Basel, 2003.
3 A. Goetz and G. Poggiaspalla, Rotations by π/7, Nonlinearity 17 (2004), no. 5, 1787-1802. https://doi.org/10.1088/0951-7715/17/5/013   DOI
4 R. Adler, B. Kitchens, and C. Tresser, Dynamics of non-ergodic piecewise affine maps of the torus, Ergo. The. & Dynam. Sys. 21 (2001), 959-999.   DOI
5 E. Akin, The general topology of dynamical systems, Graduate Studies in Mathematics, 1, American Mathematical Society, Providence, RI, 1993. https://doi.org/10.1090/gsm/001   DOI
6 P. Ashwin, Non-smooth invariant circles in digital overflow oscillations, in Proceedings of the 4th International Workshop on Nonlinear Dynamics and Electronic Systems, pp. 417-422, Seville, Spain, 1996.
7 P. Ashwin, X. Fu, T. Nishikawa, and K. Zyczkowski, Invariant sets for discontinuous parabolic area-preserving torus maps, Nonlinearity 13 (2000), no. 3, 819-835. https://doi.org/10.1088/0951-7715/13/3/317   DOI
8 F. Blanchini, Set invariance in control, Automatica J. IFAC 35 (1999), no. 11, 1747-1767. https://doi.org/10.1016/S0005-1098(99)00113-2   DOI
9 J. Buzzi, Piecewise isometries have zero entropy, Ergo. The. & Dynam. Sys. 21 (2001), 1371-1377.
10 J. Buzzi and P. Hubert, Piecewise monotone maps without periodic points: rigidity, measures and complexity, Ergodic Theory Dynam. Systems 24 (2004), no. 2, 383-405. https://doi.org/10.1017/S0143385703000488   DOI
11 P. Ashwin, Elliptic behaviour in the sawtooth standard map, Phys. Lett. A 232 (1997), no. 6, 409-416. https://doi.org/10.1016/S0375-9601(97)00455-6   DOI
12 A. C. Davis, Nonlinear oscillations and chaos from digital filter overflow, Phil. Trans. Royal Soc. Lond. A-353 (1995), 85-99.   DOI
13 E. Kerrigan, J. Lygeros, and J. M. Maciejowski, A geometric approach to reachability computations for constrained discrete-time systems, in IFAC World Congress, Barcelona, Spain, 2002.
14 P. Ashwin, J. H. B. Deane, and X. Fu, Dynamics of a bandpass sigma-delta modulator as a piecewise isometry, in Proc. IEEE Int. Symp. Circuit Sys., pp. 811-814, Sydney, Australia, 2001.
15 C. J. Ong and E. G. Gilbert, Constrained linear systems with disturbances: enlargement of their maximal invariant sets by nonlinear feedback, in Proc. Amer. Control Conf. Minneapolis, pp. 5246-5251, MN, 2006.
16 J. H. Lowenstein, Aperiodic orbits of piecewise rational rotations of convex polygons with recursive tiling, Dyn. Syst. 22 (2007), no. 1, 25-63. https://doi.org/10.1080/14689360601028100   DOI
17 E. Kerrigan and J. M. Maciejowski, Invariant sets for constrained nonlinear discrete-time systems with application to feasibility in model predictive control, in Proc. 39th IEEE Conf. on Decision and Control, Sydney, Australia, 2000.
18 T. Lin and L. O. Chua, A new class of pseudo-random generators based on chaos in digital filters, Int. J. Cir. Th. Appl., 21 (1993), 473-480.   DOI
19 J. H. Lowenstein, Fixed-point densities for a quasiperiodic kicked oscillator map, Chaos 5 (1995), 566-577.   DOI
20 J. Lowenstein, S. Hatjispyros, and F. Vivaldi, Quasi-periodicity, global stability and scaling in a model of Hamiltonian round-off, Chaos 7 (1997), no. 1, 49-66. https://doi.org/10.1063/1.166240   DOI
21 A. Goetz, Sofic subshifts and piecewise isometric systems, Ergo. The. & Dynam. Sys. 19 (1999), 1485-1501.   DOI
22 B. Kahng, Multiple valued iterative dynamics models of nonlinear discrete-time control dynamical systems with disturbance, J. Korean Math. Soc. 50 (2013), no. 1, 17-39. https://doi.org/10.4134/JKMS.2013.50.1.017   DOI
23 L. Kocarev, C. W. Wu, and L. O. Chua, Complex behavior in digital filters with overflow nonlinearity: analytical results, IEEE Trans. Circuits Systems II 43 (1996), 234-246.   DOI
24 P. Ashwin, W. Chambers, and G. Petrov, Lossless digital filter overflow oscillations: approximation of invariant fractals, Int. J. Bifur. Chaos Appl. Sci. Eng. 7 (1997), 2603-2610.   DOI
25 M. Trovati and P. Ashwin, Tangency properties of a pentagonal tiling generated by a piecewise isometry, Chaos 17 (2007), no. 4, 043129, 11 pp. https://doi.org/10.1063/1.2825291   DOI
26 B. Kahng, The approximate control problems of the maximal invariant sets of non-linear discrete-time disturbed control dynamical systems: an algorithmic approach, in Proceedings of the 4th International Conference on Control, Automation and Systems, pp. 1513-1518, KINTEX, Gyeonggi-do, Korea, 2010.
27 S. V. Rakovic and M. Fiacchini, Invariant Approximations of the Maximal Invariant Set or "Encircling the Square, in IFAC World Congress, Seoul, Korea, July 2008.
28 J. H. Lowenstein, K. L. Kouptsov, and F. Vivaldi, Recursive tiling and geometry of piecewise rotations by π/7, Nonlinearity 17 (2004), no. 2, 371-395. https://doi.org/10.1088/0951-7715/17/2/001   DOI
29 D. Q. Mayne, M. M. Seron, and S. V. Rakovic, Robust model predictive control of constrained linear systems with bounded disturbances, Automatica J. IFAC 41 (2005), no. 2, 219-224. https://doi.org/10.1016/j.automatica.2004.08.019   DOI
30 M. J. Ogorza lek, Chaos and complexity in nonlinear electronic circuits, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 22, World Scientific Publishing Co. Pte. Ltd., Singapore, 1997. https://doi.org/10.1142/9789812798626   DOI
31 B. Kahng, The unique ergodic measure of the symmetric piecewise toral isometry of rotation angle θ = kπ/5 is the Hausdorff measure of its singular set, Dyn. Syst. 19 (2004), no. 3, 245-264. https://doi.org/10.1080/14689360410001729595   DOI
32 S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, Invariant approximation of the minimal robust positively invariant set, IEEE Trans. Automat. Control 50 (2005), no. 3, 406-410. https://doi.org/10.1109/TAC.2005.843854   DOI
33 S. V. Rakovic, E. C. Kerrigan, D. Q. Mayne, and J. Lygeros, Reachability analysis of discrete-time systems with disturbances, IEEE Trans. Automat. Control 51 (2006), no. 4, 546-561. https://doi.org/10.1109/TAC.2006.872835   DOI
34 M. Mendes, Dynamics of piecewise isometric systems with particular emphasis to the g map, Ph. D. Thesis, University of Surrey, 2001.
35 T. Jech, Set theory, the third millennium edition, revised and expanded., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
36 B. Kahng, Dynamics of symplectic piecewise affine elliptic rotations maps on tori, Ergod. Th. & Dynam. Sys. 22 (2002), 483-505.   DOI
37 B. Kahng, Maximal invariant sets of multiple valued iterative dynamics in disturbed control systems, Int. J. Circ. Sys. Signal Proc. 2 (2008), 113-120.
38 B. Kahng, Positive invariance of multiple valued iterative dynamical systems in disturbed control models, in Proceedings of the 17th IEEE Mediterranean Conference on Control and Automation, pp. 664-668, Thessaloniki, Greece, 2009.
39 Z. Artstein and S. V. Rakovic, Feedback and invariance under uncertainty via setiterates, Automatica J. IFAC 44 (2008), no. 2, 520-525. https://doi.org/10.1016/j.automatica.2007.06.013   DOI
40 K. Hrbacek and T. Jech, Introduction to Set Theory, second edition, Monographs and Textbooks in Pure and Applied Mathematics, 85, Marcel Dekker, Inc., New York, 1984.
41 B. Kahng, Theory and implementation of the multiple valued iterative dynamics algorithms for a class of singularly disturbed nonlinear control dynamical systems, Appl. Sci. 1 (2019), 1:1061.
42 B. Kahng, Dynamics of kaleidoscopic maps, Adv. Math. 185 (2004), no. 1, 178-205. https://doi.org/10.1016/S0001-8708(03)00170-1   DOI
43 B. Kahng, M. Gomez, and E. Padilla, Visualization algorithms for the steady state sets of a class of singularly disturbed nonlinear control dynamical systems, Int. J. Math. Models Methods 10 (2016), 237-243.
44 B. Kahng, Singularities of 2-dimensional invertible piecewise isometric dynamics, Chaos 19 (2009), 023115.   DOI
45 B. Kahng, An optimization of maximal invariance in a class of multiple valued iterative dynamics models of nonlinear disturbed control systems, Fractals 24 (2016), 1650044.   DOI
46 B. Kahng and J. Davis, Maximal dimensions of uniform Sierpinski fractals, Fractals 18 (2010), no. 4, 451-460. https://doi.org/10.1142/S0218348X10005135   DOI
47 B. Kahng, Redifining chaos: Devaney-chaos for piecewise isometric dynamical systems, International J. Math. Models and Methods in Applied Sciences 4 (2009), 317-326.
48 M. Mendes, On maximal invariant sets, preprint, (August, 2006).
49 B. Kahng and M. Mendes, The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems, Discrete Contin. Dyn. Syst. 2013, Dynamical systems, differential equations and applications. 9th AIMS Conference. Suppl., 393-406, 2013. https://doi.org/10.3934/proc.2013.2013.393   DOI
50 J. H. Lowenstein, G. Poggiaspalla, and F. Vivaldi, Sticky orbits in a kickedoscillator model, Dyn. Syst. 20 (2005), no. 4, 413-451. https://doi.org/10.1080/14689360500167611   DOI
51 X.-C. Fu and J. Duan, On global attractors for a class of nonhyperbolic piecewise affine maps, Phys. D 237 (2008), no. 24, 3369-3376. https://doi.org/10.1016/j.physd.2008.07.012   DOI
52 M. Pollicott and H. Weiss, The dimensions of some self-affine limit sets in the plane and hyperbolic sets, J. Statist. Phys. 77 (1994), no. 3-4, 841-866. https://doi.org/10.1007/BF02179463   DOI
53 S. V. Rakovic, E. C. Kerrigan, D. Q. Mayne, and K. I. Kouramas, Optimized robust control invariance for linear discrete-time systems: theoretical foundations, Automatica J. IFAC 43 (2007), no. 5, 831-841. https://doi.org/10.1016/j.automatica.2006.11.006   DOI
54 X.-C. Fu, F.-Y. Chen, and X.-H. Zhao, Dynamical properties of 2-torus parabolic maps, Nonlinear Dynam. 50 (2007), no. 3, 539-549. https://doi.org/10.1007/s11071-006-9179-9   DOI
55 X.-C. Fu and J. Duan, Global attractors and invariant measures for non-invertible planar piecewise isometric maps, Phys. Lett. A 371 (2007), no. 4, 285-290. https://doi.org/10.1016/j.physleta.2007.06.033   DOI