• Title/Summary/Keyword: transferred energy

Search Result 428, Processing Time 0.029 seconds

A Synchronization Tracking Algorithm to Compensate the Drift of Satellite in FH-FDMA Satellite Communication System (FH-FDMA 위성 통신 시스템에서 위성 드리프트 보정 동기추적 알고리즘)

  • Bae, Suk-Neung;Kim, Su-Il;Choi, Young-Kyun;Jin, Byoung-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.159-166
    • /
    • 2008
  • In this paper, we proposed an algorithm to solve the problem that can't maintain hop synchronization using only early-late gate tracking loop due to the drift of geo-stationary satellite in frequency hopping satellite communication system. When the signal is transferred to downlink through DRT(Dehop-Rebop Transponder), the problem with synchronization loss is occurred periodically when using only early-late gate tracking loop, because of energy loss in each side portion of hop due to orbital variation of the satellite. To solve this problem, we have developed Anti-Shrink synchronization tracking algorithm which uses the prediction value of transmission timing and the structure of inner-outer gate instead of early-late gate with the ranging information. Through simulations, we showed that the performance of the Anti-Shrink algorithm is better than that of simple inner-outer energy ratio algorithm and similar to that of conventional early-late tracking loop algorithm with ranging information. No synchronization failure in the proposed algorithm was occurred because of less energy loss and robustness without the ranging information.

A Routing Method Considering Sensed Data in Wireless Sensor Networks (무선 센서 네트워크에서 데이터 센싱을 고려한 라우팅 기법)

  • Song, Chang-Young;Lee, Sang-Won;Cho, Seong-Soo;Kim, Seong-Ihl;Won, Young-Jin;Kang, June-Gill
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • It is very important to prolong the lifetime of wireless sensor networks by using their limited energy efficiently, since it is not possible to change or recharge the battery of sensor nodes after deployment. LEACH protocol is a typical routing protocol based on the clustering scheme for the efficient use of limited energy. It is composed of a few clusters, which consist of head nodes and member nodes. Though LEACH starts from the supposition that all nodes have data transferred to a head, there must be some nodes having useless data in actual state. In this paper we propose a power saving scheme by making a member node dormant if previous sensed data and current data is same. We evaluate the performance of the proposed scheme in comparison with original clustering algorithms. Simulation results validate our scheme has better performance in terms of the number of alive nodes as time evolves.

A Study on the Ignition Temperature and Ignition Induction Time According to Storage Amount of Wood Pellets (우드펠릿의 저장량에 따른 발화온도 및 발화유도시간에 관한 연구)

  • Kim, Hyeong-Seok;Choi, Yu-Jung;Kim, Jung-Hun;Jeong, Phil-Hoon;Choi, Jae-Woo
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • While wood pellets are often used as a fuel in thermoelectric power plants and firewood boilers, there is a risk of ignition temperature when strong wood pellets, which have a high calorific value, for prolonged periods of time. In this research study, the minimum auto ignition temperature and the ignition limitation temperature according to the change in flow rate depending on the size of the test vessel were calculated, and based on these temperatures, the apparent activation energy was calculated to predict the combustive properties of the material. The apparent activation energy was calculated to be 190.224 kJ/mol. The thicker the sample is storage in the vessel, the longer the ignition induction time was due to the increased difficulty in heat being transferred from the surface of the vessel to the middle section area of the vessel. For vessel of the same size, the higher the flow rate, the lower the auto ignition temperature was. It was also confirmed that increases in the size of the test vessel lowered the auto ignition temperature and increased the ignition induction time.

Prediction of net energy values in expeller-pressed and solvent-extracted rapeseed meal for growing pigs

  • Li, Zhongchao;Lyu, Zhiqian;Liu, Hu;Liu, Dewen;Jaworski, Neil;Li, Yakui;Lai, Changhua
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • Objective: The objective of this study was to determine net energy (NE) of expeller-press (EP-RSM) and solvent-extracted rapeseed meal (SE-RSM) and to establish equations for predicting the NE in rapeseed meal (RSM) fed to growing pigs. Methods: Thirty-six barrows (initial body weight [BW], 41.1±2.2 kg) were allotted into 6 diets comprising a corn-soybean meal basal diet and 5 diets containing 19.50% RSM added at the expense of corn and soybean meal. The experiment had 6 periods and 6 replicate pigs per diet. During each period, the pigs were individually housed in metabolism crates for 16 days which included 7 days for adaption to diets. On day 8, pigs were transferred to respiration chambers and fed their respective diet at 2,000 kJ metabolizable energy (ME)/kg BW0.6/d. Feces and urine were collected, and daily heat production was measured from day 9 to 13. On days 14 and 15, the pigs were fed at 890 kJ ME/kg BW0.6/d and fasted on day 16 for evaluation of fasting heat production (FHP). Results: The FHP of pigs averaged 790 kJ/kg BW0.6/d and was not affected by the diet composition. The NE values were 10.80 and 8.45 MJ/kg DM for EP-RSM and SE-RSM, respectively. The NE value was positively correlated with gross energy (GE), digestible energy (DE), ME, and ether extract (EE). The best fit equation for NE of RSM was NE (MJ/kg DM) = 1.14×DE (MJ/kg DM)+0.46×crude protein (% of DM)-25.24 (n = 8, R2 = 0.96, p<0.01). The equation NE (MJ/kg DM) = 0.22×EE (% of DM)-0.79×ash (% of DM)+14.36 (n = 8, R2 = 0.77, p = 0.018) may be utilized to quickly determine the NE in RSM when DE or ME values are unavailable. Conclusion: The NE values of EP-RSM and SE-RSM were 10.80 and 8.45 MJ/kg DM. The NE value of RSM can be well predicted based on energy content (GE, DE, and ME) and proximate analysis.

Analysis of Heat Transfer Characteristics by Materials in Closed Conditions Using Acrylic Hemisphere (I): Comparison of Interior Finishing Materials (아크릴 반구를 이용한 밀폐 조건에 따른 재료별 열 이동 특성 분석(I): 실내마감재 종류에 따른 비교)

  • YANG, Seung Min;LEE, Hyun Jae;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.217-230
    • /
    • 2020
  • Global warming has increased interest in reducing greenhouse gas emissions. And a policy has effort to reduce energy consumption as a greenhouse gas reduction plan. In Korea, 25% of total energy is consumed in the building sector. In order to reduce energy consumption of buildings, it is possible to expand the utilization of wood as a structural material or thermal insulation materials with low thermal conductivity. It is also reported that when used as an interior finishing material, the energy consumption of the building is reduced by up to 7% by insulation performance. In this study, the heat transfer characteristics and the heat capacity were compared according to the three type of finishing materials(cement, paulownia coreana, medium density fiberboard) normally used as indoor finish materials. Through this study, most of the heat transfer volumes are transferred in the form of radiant heat, and the result was derived from the highest amount of energy and heat transfer in the use of paulownia coreana. When indoor finishing materials are used as wood, it is deemed that energy efficiency inside the building will be improved.

Characteristics of the Decontamination by the Melting of Aluminum Waste (용융에 의한 알루미늄 폐기물의 제염 특성)

  • Song Pyung-Seob;Choi Wang-Kyu;Min Byung-Youn;Kim Hak-I;Jung Chong-Hun;Oh Won-Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.95-104
    • /
    • 2005
  • Effects of the aluminum melting temperature, melting time and a kind of flux agents on the distribution of surrogate nuclide were investigated in the electric furnace at the aluminum melting including surrogate radionuclides(Co, Cs, Sr) in order to establish the fundamental research of the melting technology for the metallic wastes from the decommissioning of the TRIGA research reactor. It was verified that the fluidity of aluminum melt was increased by adding flux agent but it was slightly varied according to the sort of flux agents. The results of the XRD analysis showed that the surrogate nuclides move into the slag phase and then they were combined with aluminum oxide to form more stable compound. The weight of the slag generated from aluminum melting test increased with increasing melting temperature and melting time and the increase rate of the slag depended on the kind of flux agents added in the aluminum waste. The concentration of the cobalt in the ingot phase decreased with increasing reaction temperature but it increased in the slag phase up to 90$\%$according to the experimental conditions. The volatile nuclides such as Cs and Sr considerably transferred from the ingot phase to the slag and dust phase.

  • PDF

A Study on the Content Variation of Metals in Welding Fumes (용접흄 충 금속함량 변화에 관한 연구)

  • 윤충식;박동욱;박두용
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

Operation Analysis of Resonant DC/DC Converter able to Harvest Thermoelectric Energy (열전에너지 수확이 가능한 공진형 DC/DC 컨버터의 동작 해석)

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Kwan-Youl;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.150-158
    • /
    • 2010
  • The operational characteristics of a resonant DC/DC converter, which can harvest thermoelectric energy, is analyzed, depending on the relative magnitudes of the input voltage and the load voltage. The resonant converter consists of LC resonant circuit connected to DC input source and a resonant pulse converter in which the input energy is transferred to the load as the resonant capacitor voltage is peak. The resonant capacitor doubles the input voltage by the resonance phenomenon. By the relative magnitude between the input voltage and the output voltage, the resonant DC/DC converter operates in three different modes. For boost mode, the peak voltage of the resonant capacitor is smaller than the load voltage. For hybrid mode, the peak voltage of the resonant capacitor is bigger than the load voltage and every switching period has both the boost mode and the direct mode. For the direct mode, the input voltage is bigger than the load voltage and the converter transfers directly the input energy to the load without the switching operation. Operation principles and the feasibility of the converter for the thermoelectric energy harvesting are verified with PSPICE simulation and experiment.

Thermal Decomposition and Stabilization of the Lagoon Sludge Solid Waste after Dissolution with Water (라군 슬러지 물 용해 후 고체 패기물의 열분해 및 안정화)

  • Oh Jong-Hyeok;Hwang Doo-Seong;Lee Kue-Il;Choi Yun-Dong;Hwang Sung-Tae;Park Jin-Ho;Park So-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.249-256
    • /
    • 2005
  • Thermal decomposition and stabilization characteristics of the solid cake after the dissolution of nitrate of the lagoon sludge was investigated. Most of the nitrates were dissolved in the water and removed to the filtrate, but small amount of nitrates, calcium carbonate and uranium were remained in the solid cake. The solid cake was thermally decomposed in the muffle furnace at $900^{\circ}C$ for 5 hours. Uranium, which is in the lagoon 1, was stabilized with $NaNO_3$ decomposition to $Na_{2}O{\cdot}2UO_3$ form. For the lagoon 2, it is confirmed that CaO, which was created by thermal decomposition of the $Ca(NO_3)_2$ and $CaCO_3$, was transferred to $Ca(OH)_2$ in the air with water. Because it is known that $Ca(OH)_2$ is stable material, further additives did not need to the stabilization of the thermal decomposition of the lagoons.

  • PDF

Development of Antifreeze Concentration Control device for Solar Heat Energy System (태양열에너지 시스템용 부동액 농도 제어 장치의 개발)

  • Seo, Choong-Kil;Won, Joung Wun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.