• Title/Summary/Keyword: transfer structures

Search Result 1,165, Processing Time 0.025 seconds

Study on Stress Transfer Property for Embedded FBG Strain Sensors in Concrete Monitoring

  • Jang, Il-Young;Yun, Ying-Wei
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • Fiber Bragg grating (FBG) sensors already have been the focus for structural health monitoring (SHM) due to their distinguishing advantages. However, as bare optical fiber is very fragile, bare FBG strain sensor without encapsulation can not properly be applied in practical infrastructures. Therefore encapsulation techniques for making encapsulated FBG strain sensor show very important in pushing forward the application of FBG strain sensors in SHM. In this paper, a simplified approximate method to analyze the stress transferring rules for embedded FBG strain sensors in concrete monitoring is put forward according to mechanics of composite materials. Shear lag theory is applied to analyze the stress transferring rule of embedded FBG strain sensor in measured host material at the first time. The measured host objects (concrete) and the encapsulated FBG strain sensor are regarded as a composite, and then the stress transfer formula and stress transfer coefficient of encapsulated FBG strain sensor are obtained.

Static Analysis of Two Dimensional Curbed Beam Structure by Finite Element-Transfer Stiffness Coefficent Method (유한요소-전달강성계수법에 의한 2차원 곡선 보 구조물의 정적해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2017
  • The objective of this study is the finite element-transfer stiffness coefficient method, which is the combination of the modeling technique of finite element method and the transfer technique of transfer stiffness coefficient method, is applied in the static analyses of two dimensional curved beam structures. To confirm the effectiveness of the applied method, two computational models are selected and analyzed by using finite element method, finite element-transfer stiffness coefficient method and exact solution. The computational results of the static analyses for two computational models using finite element-transfer stiffness coefficient method are equal to those using finite element method. When the element partition number of curved beam structure is increased, the computational results of the static analyses using both methods approach the exact solution. We confirmed that the finite element-transfer stiffness coefficient method is superior to finite element method when the number of the curved beam elements is increased from the viewpoints of the computational speed and the utility of computer memory.

Flexural Free Vibration Analysis of Axisymmetric Annular Plates Using Sylvester-Transfer Stiffness Coefficient Method (실베스터-전달강성계수법을 이용한 축대칭 환원판의 굽힘 자유진동 해석)

  • Choi, Myung-Soo;Kondou, Takahiro;Byun, Jung-Hwan;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.60-67
    • /
    • 2015
  • While designing and operating machines, it is very important to understand the dynamic characteristic of the machines. Authors developed the Sylvester-transfer stiffness coefficient method in order to analyze effectively the free vibration of machines or structures. The Sylvester-transfer stiffness coefficient method was derived from the combination of the Sylvester's inertia theorem and the transfer stiffness coefficient method. In this paper, the authors formulate the computational algorithm for flexural free vibration analysis of axisymmetric annular plate using the Sylvester-transfer stiffness coefficient method. To confirm the usefulness of the Sylvester-transfer stiffness coefficient method, the natural frequencies and modes for two computational models computed using the Sylvester-transfer stiffness coefficient method are compared with those computed using the exact solution and the finite element method.

Transfer length of 2400 MPa seven-wire 15.2 mm steel strands in high-strength pretensioned prestressed concrete beam

  • Yang, Jun-Mo;Yim, Hong-Jae;Kim, Jin-Kook
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.577-591
    • /
    • 2016
  • In this study, the transfer length of 2400 MPa, seven-wire high-strength steel strands with a 15.2 mm diameter in pretensioned prestressed concrete (PSC) beams utilizing high strength concrete over 58 MPa at prestress release was evaluated experimentally. 32 specimens, which have the variables of concrete compressive strength, concrete cover depth, and the number of PS strands, were fabricated and corresponding transfer lengths were measured. The strands were released gradually by slowly reducing the pressure in the hydraulic stressing rams. The measured results of transfer length showed that the transfer length decreased as the concrete compressive strength and concrete cover depth increased. The number of strands had a very small effect, and the effect varied with both the concrete cover depth and concrete strength. The results were compared to current design codes and transfer lengths predicted by other researchers. The comparison results showed that the current transfer length prediction models in design codes may be conservatively used for 2400 MPa high-strength strands in high-strength concrete beams exceeding 58 MPa at prestress release.

Fragmentations and Proton Transfer Reactions of Product Ions Formed from Mono-, Di-, and Triethanolamines

  • Choi, Sung-Seen;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1538-1544
    • /
    • 2004
  • Fragmentations and proton transfer reactions of mono-, di-, and triethanolamines were studied using FTMS. It was found that the most abundant fragment ion was $[M-CH_2OH]^+$. The $[M-CH_2OH-H_2O]^+$ was observed in the mass spectra of diethanolamine and triethanolamine. By increasing the ion trapping time in the ICR cell, the $[M+H]^+$ and $[M+H-H_2O]^+$ ions were notably increased for all the samples while the $[M+H-2H_2O]^+$ was observed in the mass spectra of diethanolamine and triethanolamine. The proton transfer reactions between the fragment ions and neutral molecules occurred predominantly by increasing the ion trapping time. The rate constants for the proton transfer reactions were calculated from experimental results. The proton transfer reaction of $CHO^+$ was the fastest one, which is consistent with the heats of reaction. The rate constants for proton transfer reactions of triethanolamine were much slower than those of ethanolamine and diethanolamine because of the steric hindered structure of triethanolamine. The plausible structures of observed ions and heats of reaction for proton transfer were calculated with AM1 semiempirical method.

Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures

  • Bozyigit, Baran;Yesilce, Yusuf;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • This study aims to estimate crack location and crack length in damaged beam structures using transfer matrix formulations, which are based on analytical solutions of governing equations of motion. A single variable shear deformation theory (SVSDT) that considers parabolic shear stress distribution along beam cross-section is used, as well as, Timoshenko beam theory (TBT). The cracks are modelled using massless rotational springs that divide beams into segments. In the forward problem, natural frequencies of intact and cracked beam models are calculated for different crack length and location combinations. In the inverse approach, which is the main concern of this paper, the natural frequency values obtained from experimental studies, finite element simulations and analytical solutions are used for crack identification via plots of rotational spring flexibilities against crack location. The estimated crack length and crack location values are tabulated with actual data. Three different beam models that have free-free, fixed-free and simple-simple boundary conditions are considered in the numerical analyses.

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

Composite action in connection regions of concrete-filled steel tube columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.47-64
    • /
    • 2003
  • In a nonlinear finite element study on the mechanical behavior of simple beam connections to continuous concrete-filled steel tube columns, two principally different connection types were analyzed: one with plates attached to the outside of the tube wall, relying on shear transfer, and one with an extended plate inserted through the steel section to ensure bearing on the concrete core. The load was applied partly at the connection within the column length and partly at the top, representing the load from upper stories of a multistory building. The primary focus was on the increased demand for load transfer to ensure composite action when concrete with higher compressive strength is used. The results obtained from the analyses showed that the design bond strength derived from push tests is very conservative, mainly due to the high frictional shear resistance offered by pinching and contraction effects caused by connection rotation. However, with higher concrete strength the demand for load transfer increases, and is hard to fulfill for higher loads when connections are attached only to the steel section. Instead, the connection should penetrate into the concrete core to distribute load to the concrete by direct bearing.

Transfer Learning Based Real-Time Crack Detection Using Unmanned Aerial System

  • Yuvaraj, N.;Kim, Bubryur;Preethaa, K. R. Sri
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.351-360
    • /
    • 2020
  • Monitoring civil structures periodically is necessary for ensuring the fitness of the structures. Cracks on inner and outer surfaces of the building plays a vital role in indicating the health of the building. Conventionally, human visual inspection techniques were carried up to human reachable altitudes. Monitoring of high rise infrastructures cannot be done using this primitive method. Also, there is a necessity for more accurate prediction of cracks on building surfaces for ensuring the health and safety of the building. The proposed research focused on developing an efficient crack classification model using Transfer Learning enabled EfficientNet (TL-EN) architecture. Though many other pre-trained models were available for crack classification, they rely on more number of training parameters for better accuracy. The TL-EN model attained an accuracy of 0.99 with less number of parameters on large dataset. A bench marked METU dataset with 40000 images were used to test and validate the proposed model. The surfaces of high rise buildings were investigated using vision enabled Unmanned Arial Vehicles (UAV). These UAV is fabricated with TL-EN model schema for capturing and analyzing the real time streaming video of building surfaces.

Study on Combustion Characteristics of the Opposed Flames for Different Mixing Rates of Carbon Dioxide and Water Vapor (이산화탄소 및 수중기의 혼합율에 따른 대향류 화염의 연소특성 연구)

  • Park, Won-Hee;Jo, Bum-Jin;Kim, Tae-Kuk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.49-54
    • /
    • 2004
  • Detailed flame structures of the opposed flames formed for different oxidant compositions are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN code. Only the $CO_2$ and $H_2O$ are assumed to participate by absorbing the radiative energy while all other gases are assumed to be transparent. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the opposed flow flames. The results show that the different radiation model can cause different results for flame structures and the WSGGM with gray gas regrouping is successful in modeling the opposed flames with non-gray gas mixture. The numerical results show that the increases in $CO_2$ and $H_2O$ compositions cause to reduce the flame temperature and the NO formation.

  • PDF