• Title/Summary/Keyword: transfer length

Search Result 1,313, Processing Time 0.035 seconds

Natural Convective Flow and Heat Transfer in a Square Enclosure with a Horizontal Partition (수평격판을 갖는 정사각형 밀폐공간내에서 자연대류 유동 및 열전달)

  • 정인기;김점수;송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2304-2314
    • /
    • 1993
  • Natural convective flow and heat transfer in a two-dimensional square enclosure fitted with a horizontal partition are investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of length, position and thermal conductivity of the partition, and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection is resulted in a sudden rise of overall heat transfer, but the increase of length of partition is significantly restrained the increase of Nusselt number. The maximum heat transfer was shown just before the transition of the direction of oscillating flow. An oscillatory motion of flow was perfectly shown the stability with the decrease of the length of partition and Rayleigh number. Also, the heat transfer was raised with the increase of the thermal conductivity in proportion to the increase of the length of partition. The stability and oscillation of flow are affected by the position of partition.

Performance Characteristics of a Coaxial Pulsed Plasma Thruster with Teflon Cavity

  • Edamitsu, Toshiaki;Tahara, Hirokazu;Yoshikawa, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.577-587
    • /
    • 2004
  • A coaxial pulsed plasma thruster (PPT) with a Teflon cavity was designed, and its performance characteristics were examined varying stored energy, cavity length and capacitance. The PPT was tested as the entire system including the discharge circuit, and the results were explained with both the transfer efficiency and the acceleration efficiency. The transfer efficiency is defined as the fraction of energy in capacitors supplied into plasma, and the acceleration efficiency as the fraction of energy supplied into plasma converted to thrust energy. To estimate these efficiencies, the equivalent plasma resistance was defined and calculated using energy conservation during discharge. The equivalent plasma resistance proportionally increased with cavity length, and therefore the current peak increased with decreasing cavity length. The energy density calculated by the transfer efficiency was increased with decreasing cavity length. As a result, higher acceleration efficiency and lower transfer efficiency were obtained with shorter cavity length. Accordingly, there was an optimal cavity length for the thrust efficiency. The specific impulse and the impulse bit per unit stored energy ranged from 390 s and 50 $\mu$ Ns/J for a cavity length of 34 mm to 825 s and 11 $\mu$ Ns/J for a cavity length of 4 mm when the stored energy was fixed to 21.4J. Thus, it was showed that the performance of this PPT approached that of electromagnetic-acceleration-type PPT with decreasing cavity length. The PPT achieved thrust efficiencies of 10-12% at 21.4 J and 6-7% at 5.35 J at cavity lengths between 14 mm and 29 mm.

  • PDF

Effects of Inclination of Enclosure and Partition on Natural Convective Heat Transfer in a Partitioned Enclosure (격판을 가진 밀폐공간내의 자연대류 열전달에 공간 및 격판의 경사가 미치는 영향)

  • Chung, I.K.;Song, D.J.;Kim, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.302-314
    • /
    • 1994
  • The effects of the inclination of enclosure and partition on natural convective flow and heat transfer were investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was positioned perpendicularly at the mid-height of one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were performed with the variations of the partition length and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). The effects of the inclination angle of enclosure and partition on the heat transfer within an enclosure were also studied. As the results, the increase of the inclination angle of enclosure rapidly raised the heat transfer rate, while the inclination angle for the maximum Nusselt number was retarded with the increase of the partition length and the decrease of the heat transfer rate became larger in proportion to the increase of the partition length. The Nusselt number obtained by the inclination of partition was smaller than that of the inclination of enclosure. However, the difference of the heat transfer rates was considerably decreased at the longer partition lengths and the trends for the variation of the average Nusselt number were more similar with that of the inclination of enclosure. The upward oriented partition increases the convective heat transfer distinctly in contrast to that of the inclination of enclosure as the partition length increases.

  • PDF

Vowel length difference before voiced/voiceless consonants in English and Korean

  • Moon, Seung-Jae
    • Phonetics and Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.35-41
    • /
    • 2017
  • The existence and the extent of vowel length difference before voiced/voiceless consonants in English and Korean are examined in three groups: (1) Korean-speaking Americans (group A), (2) immigrants who moved to the U.S. in their early teens (group I), and (3) Koreans who have been in the U.S. for less than 3 years (group K). 14 subjects were recorded reading 10 English and 10 Korean sentences. The results show that the three groups exhibit different patterns of the vowel length difference: Group A shows a very strong tendency of vowel lengthening before voiced consonants in both English and Korean, while Group I shows less degree of vowel lengthening, and Group K shows almost no tendency of vowel length difference in both languages. This strongly suggests that, (1) unlike English, Korean does not have the vowel length difference depending on the following consonants, and (2) the vowel lengthening effect observed in Korean (L2) speech in group A may be the result of transfer of the phonetic trait acquired in English (L1). It also implies that, in teaching pronunciation, some facts such as the vowel length difference cannot be expected to be acquired automatically for the learners of English, but have to be taught explicitly.

An Experimental Study on the Estimation of Transfer Length of Strand in the Prestressed Hollow Core Slab (프리스트레스트 중공 슬래브 강연선의 전달길이 평가에 대한 실험적 연구)

  • Jung-Soo, Lee;Jong-Hyun, Ryu;Seung-Hee, Kwon;Jin-Kook, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.395-401
    • /
    • 2022
  • In this study, the transfer length of strand was measured for three types of HCS member(H200, H320, and H400) manufactured by the pretension method. Strain gauges were attached in longitudinal direction at regular intervals on the sides of the HCS members, and the strain was measured during the cutting process of HCS. The stain at the cutting point was zero, and gradually increases in the central direction of the member, converging to a constant value after passing the transfer length. In the case of H200 members in which the strands were arranged one by one, the transfer lengths were formed within the range of the design equation (up to 762 mm). The transfer length of the H320 member and the H400 member, in which three strands were arranged, was higher than the design range (850 mm or more).

A Study on the development of transfer system of cutting punched pipes. (타공파이프 절단을 위한 이송시스템 개발에 관한 연구)

  • Park, J.S.;Yoon, D.H.;Jung, C.S.;Kim, Y.S.;Yang, S.Y.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.66-69
    • /
    • 2010
  • A punched pipe in a muffler for an automobile has many important variables, like location of holes in the pipe and length of the pipe related to noise reduction of a diffuser. This pipe is cut depending on length of product and this process, generally workers cut pipes by hands. In this process, there are many errors and it relies on the skill of workers, so it can happen that cycle time for complete product gets long and productivity gets low. Therefore, we need a vision system to distinguish holes in the punched pipe and a transfer system to set the cutting position automatically by moving the pipe depending on forward and backward part of the holes. This paper explains the development of an automatic transfer device which will cause the beating pipe to be cut correctly, exactly the same length as the product.

  • PDF

Surgical Anatomy of Temporalis Muscle Transfer with Fascia Lata Augmentation for the Reanimation of the Paralyzed Face: A Cadaveric Study

  • Yi Zhang;Johannes Steinbacher;Wolfgang J. Weninger;Ulrike M. Heber;Lukas Reissig;Erdem Yildiz;Chieh-Han J. Tzou
    • Archives of Plastic Surgery
    • /
    • v.50 no.1
    • /
    • pp.42-48
    • /
    • 2023
  • Background The temporalis muscle flap transfer with fascia lata augmentation (FLA) is a promising method for smile reconstruction after facial palsy. International literature lacks a detailed anatomical analysis of the temporalis muscle (TPM) combined with fascia lata (FL) augmentation. This study aims to describe the muscle's properties and calculate the length of FL needed to perform the temporalis muscle flap transfer with FLA. Methods Twenty nonembalmed male (m) and female (f) hemifacial cadavers were dissected to investigate the temporalis muscle's anatomy. Results The calculated minimum length of FL needed is 7.03cm (f) and 5.99cm (m). The length of the harvested tendon is 3.16cm/± 1.32cm (f) and 3.18/± 0.73cm (m). The length of the anterior part of the temporalis muscle (aTPM) is 4.16/± 0.80cm (f) and 5.30/± 0.85cm (m). The length of the posterior part (pTPM) is 5.24/± 1.51cm (f) and 6.62/± 1.03cm (m). The length from the most anterior to the most posterior point (aTPMpTPM) is 8.60/± 0.98cm (f) and 10.18/± 0.79cm (m). The length from the most cranial point to the distal tendon (cTPMdT) is 7.90/± 0.43cm (f) and 9.79/± 1.11cm (m). Conclusions This study gives basic information about the temporalis muscle and its anatomy to support existing and future surgical procedures in their performance. The recommended minimum length of FL to perform a temporalis muscle transfer with FLA is 7.03cm for female and 5.99cm for male, and minimum width of 3 cm. We recommend harvesting some extra centimeters to allow adjusting afterward.

A Study on Response Characteristics of Jet-diffusion Flame and Premixed Flame with Various Velocity Perturbations (제트확산화염과 예혼합화염의 다양한 속도 섭동에 대한 응답 특성)

  • Ahn, Myunggeun;Kim, Taesung;Kim, Heuydong;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2017
  • An experimental study investigates the flame response characteristics of jet-diffusion flame and premixed flame. The experiment was conducted while varying the amplitude. Flame lengths were quantified for OH chemiluminescence measurement and compared with the result of the flame transfer function. Flame length and flame velocity perturbation were normalized and compared with the result of the flame transfer function. The comparison results appear that velocity perturbation and flame length oscillation of premixed flame show linear behaviors on the other hand jet-diffusion flame, amplitudes are more thant 0.20, shows nonlinear behaviors of flame velocity perturbation and flame length oscillation.

Reproductive Efficiency and Characteristics of Cloned Miniature Piglets Produced from Domestic Commercial Gilts

  • You, Jin-Young;Jeon, Yu-Byeol;Hyun, Sang-Hwan;Park, Soo-Bong;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.215-219
    • /
    • 2010
  • The objective of this study was to examine the reproductive characteristics of cloned miniature piglets produced from surrogate domestic pigs. Somatic cell nuclear transfer (SCNT) miniature pig embryos were transferred into domestic pigs. As controls, domestic pigs of the same breed with surrogates for SCNT embryos and miniature pigs of the same breed with the somatic cell donor were bred by artificial insemination and natural mating, respectively. Surrogate domestic pigs that farrowed cloned miniature piglets had a significantly longer gestation length (118.1 days) than conventionally bred domestic (115.4 days) and miniature (115.5 days) pigs. Furthermore, the birth weight of cloned miniature piglets produced from domestic pigs (743 g) was significantly greater than that of miniature piglets produced by natural breeding (623 g). Also, cloned miniature piglets had a significantly lower weaning rate (49.7%) than conventionally produced domestic (91.5%) and miniature (100%) piglets. No differences were observed between female and male cloned piglets in gestation length, litter size, birth weight, or weaning rate. Our results demonstrate that gestation length is extended in domestic pigs that are transferred with SCNT miniature pig embryos and that cloned miniature piglets have increased birth weight and high pre-weaning mortality.

Finite Element Analysis of Transfer Length in Pretensioned Prestressed Concrete Members (프리텐션 PSC부재의 전달길이 해석 및 예측에 관한 연구)

  • Oh Byung-Hwan;Lim Si-Nae;Choi Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.293-302
    • /
    • 2004
  • The transfer of prestress force in pretensioned prestressed concrete (PSC) members is of great concern because it affects directly the distribution of stress around the transfer zone. The design provision of current design code on the transfer length considers only the prestress intensity and the diameter of prestressing steels. However, other factors such as concrete compressive strength and concrete cover may affect greatly the transfer length. The purpose of the present paper is to explore the various factors that affect the transfer length in pretensioned PSC members. The bond stress-slip relation between prestressing steel and concrete was modeled first from experimental data and then this model was incorporated into the interface element. The interface element was used to perform the finite element analysis for pretensioned PSC members. The results indicate that the compressive strength and concrete cover are also very important parameters which affect the transfer length greatly. This means that the current design code, which considers only the effective prestress and diameter of prestressing steel, must be improved to take into account the other important variables of compressive strength and concrete cover. The present study allows more realistic analysis and design of pretensioned PSC members.