• Title/Summary/Keyword: transfection efficiency

Search Result 134, Processing Time 0.023 seconds

Novel Gene Delivery Carrier Using Chitosan-Lipoic Acid Comb-Type Copolymer (키토산-리포산 빗살형 공중합체를 이용한 유전자 전달체 개발)

  • Kwon, Sang-Kyoo;Kim, Sung-Wan;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.501-506
    • /
    • 2010
  • Natural chitosan has high molecular weight and the poor solubility in water. Water-soluble chitosan with low molecular weight was prepared by the hydrolysis method. In order to develop an efficient gene delivery carrier, chitosan was conjugated with lipoic acid to form the comb-type copolymer. The copolymer with the amphiphilic property formed the self-assembled nanoparticles in the aqueous solution. The average size of nanoparticles was 217.6 nm and the average size of nanoparticles/DNA complex was 170 nm. New chitosan-lipoic acid copolymer showed the low cytotoxicity and 10 times higher transfection efficiency than that of the pure chitosan.

Development of the Mammalian Expression Vector System that can be Induced by IPTG and/or Lactose

  • Myung, Seung-Hyun;Park, Junghee;Han, Ji-Hye;Kim, Tae-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1124-1131
    • /
    • 2020
  • Techniques used for the regulation of gene expression facilitate studies of gene function and treatment of diseases via gene therapy. Many tools have been developed for the regulation of gene expression in mammalian cells. The Lac operon system induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) is one of the employed inducible systems. IPTG mimics the molecular structure of allolactose and has a strong affinity for the corresponding repressor. IPTG is known to rapidly penetrate into mammalian cells and exhibits low toxicity. In the present study, we developed a new inducible expression system that could regulate the expression of genes in mammalian cells using IPTG. Here we confirm that unlike other vector systems based on the Lac operon, this expression system allows regulation of gene expression with lactose in the mammalian cells upon transfection. The co-treatment with IPTG and lactose could improve the regulatory efficiency of the specific target gene expression. The regulation of gene expression with lactose has several benefits. Lactose is safe in humans as compared to other chemical substances and is easily available, making this technique very cost-effective.

Current trends of stem cell-mediated gene therapy (줄기 세포 분야의 유전자 치료 연구 동향)

  • Oh, Yu-Kyoung;Chung, Hyung-Min
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.2
    • /
    • pp.65-72
    • /
    • 2002
  • Recently, stem cell-mediated gene therapy is emerging as a novel therapeutic approach. For the successful gene modification of stem cells, the development of a suitable gene transfer technique needs to be preceded. This review focuses on the various gene transfer techniques based on nonviral and viral vectors, and physical methods. The advantages and disadvantages of each gene transfer method are compared, and the general properties of these vectors are discussed in relation to the gene transfer in stem cell research. This review also highlights the therapeutic application of stem cell-mediated gene therapy. The choice of gene transfer vectors may vary depending on the type of the stem cells and the target of stem cell therapy. Of various gene transfer methods, viral vector-based gene therapy has been emphasized due to the higher transfection efficiency. The current status and up-to-date findings of stem cell-mediated gene therapy are discussed in the viewpoint of the various targets of stem cell therapy such as the modification of stem cell potency, the acceleration of regeneration process and the formation of expressional organization.

Analysis of the Biological Function of ELDF15 Using an Antisense Recombinant Expression Vector

  • Liu, Yan;Wang, Long;Wang, Zi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9131-9136
    • /
    • 2014
  • ELDF15, homologous with AT2 receptor-interaction protein 1 (ATIP1), may play an important role in cell differentiation, proliferation, and carcinogenesis. We aimed to understand the biological function of ELDF15 via construction and transfection of a recombinant expression vector containing antisense ELDF15. Recombinant expression vectors were successfully constructed and transfected into K562 cells. A stable transfectant, known as pXJ41-asELDF15, stably produced antisense ELDF15. Compared with K562 and K562-zeo cells, K562-pXJ41-asELDF15 cells showed inhibition of cell proliferation. RT-PCR analysis showed that the expression and protein level of ELDF15 decreased significantly in K562 cells transfected with pXJ41-asELDF15. Expression of hemoglobin increased in K562 cells transfected with pXJ41-asELDF15 by benzidine staining. increases NBT reduction activity in K562 cells transfected with pXJ41-asELDF15.Colony forming efficiency in two-layer soft agar was clearly inhibited as assessed by electron microscopy. These results suggest that ELDF15 plays a potential role in cell differentiation, proliferation and carcinogenesis.

Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis

  • Cha, Eun Bi;Shin, Keun Koo;Seo, Jinho;Oh, Doo-Byoung
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.442-447
    • /
    • 2020
  • The non-viral delivery of genes into macrophages, known as hard-to-transfect cells, is a challenge. In this study, the microporation of a CpG-free and small plasmid (pCGfd-GFP) showed high transfection efficiency, sustainable transgene expression, and good cell viability in the transfections of Raw 264.7 and primary bone marrow-derived macrophages. The non-viral method using the pCGfd vector encoding anti-EGFR single-chain Fv fused with Fc (scFv-Fc) generated the macrophages secreting anti-EGFR scFv-Fc. These macrophages effectively phagocytized tumor cells expressing EGFR through the antibody-dependent mechanism, as was proved by experiments using EGFR-knockout tumor cells. Finally, peri-tumoral injections of anti-EGFR scFv-Fc-secreting macrophages were shown to inhibit tumor growth in the xenograft mouse model.

Biodistribution and Genotoxicity of Transferrin-Conjugated Liposomes/DNA Complexes in Mice

  • Lee Sang Mi;Kim Jin-Seok;Oh Yu-Kyoung;Lee Yong-Bok;Sah Hongkee
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.218-222
    • /
    • 2005
  • Transferrin-conjugated liposomes ($T_f$-liposomes) were made and formulated with pCMVluc DNA to form a lipoplex. Among the various formulations studied, the $T_f$-liposome: pCMVluc DNA complex at a ratio of 5: 1 (wt/wt) showed the highest transfection efficiency, which was twice that of $Lipofectin^{TM}$ on HeLa cells. The maxi-mum tolerated dose (MTD) of this lipoplex formulation from a single intravenous injection was over 10 mg/kg in healthy ICR mice. The RT-PCR results showed that the highest level of luciferase mRNA was detected in the lungs, followed by the liver, spleen, heart and kidneys, after an intravenous injection into mice. Two weeks after the injection, the levels of luciferase mRNA decreased gradually in the liver, spleen, heart, and kidney, but not in the lungs. The micro-array study showed that the cancer-related genes, including the bcl 6 gene, were highly up-regulated by the treatment with $T_f$-liposome/ pCMVluc DNA complex on HeLa cells, indicating that there were possible interactions between the host chromosomal DNA and the $T_f$-liposome within the cells. The results obtained from this study are expected to be useful for designing a safe and efficient gene delivery system using transferrin-conjugated liposomes.

Novel Trimeric Complex for Efficient Uptake of Plasmid Vector into HepG2 Cells

  • Joo, Jong-Hyuck;Park, Jong-Gu
    • Biomedical Science Letters
    • /
    • v.9 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • Viral and non-viral vectors have been used in the delivery of genetic materials into animal cells and tissues, with each approach having pros and cons. Non-viral vectors have many useful merits such as easy preparation, low immunity and size tolerance of a transgene when compared to those of viral vectors. Delivery specificity may be achieved by complex formation between receptor ligands and a non-viral vector. In the present study, non-viral vector systems are investigated in an effort to find a practical delivery means for gene therapy, Receptor-ligand interaction between transferrin-receptor and transferrin was utilized for efficient gene transfer into cancer cells. A plasmid vector, pcDNA3 (LacZ) was ligated with a small duplexed oligo fragment in which a Biotin- VN$^{TM}$ phosphoramidite was placed in the middle of the oligo. The plasmid vector labeled by biotin was then conjugated with biotin-labeled transferrin via streptavidin. This trimeric conjugates were delivered to a hepatoma cell line, HepG2. The delivery efficiency of the trimeric conjugate was 2-fold higher than that of cationic liposomes used for transfection of a plasmid vector. These results demonstrate that a plasmid vector can be efficiently transferred into cells by forming a trimeric complex of plasmid vector-linker-ligand.

  • PDF

Porcine somatic cell nuclear transfer using telomerase reverse transcriptase-transfected mesenchymal stem cells reduces apoptosis induced by replicative senescence

  • Jeon, Ryounghoon;Rho, Gyu-Jin
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.215-222
    • /
    • 2020
  • Mesenchymal stem cells (MSCs) have been widely used as donor cells for somatic cell nuclear transfer (SCNT) to increase the efficiency of embryo cloning. Since replicative senescence reduces the efficiency of embryo cloning in MSCs during in vitro expansion, transfection of telomerase reverse transcriptase (TERT) into MSCs has been used to suppress the replicative senescence. Here, TERT-transfected MSCs in comparison with early passage MSCs (eMSCs) and sham-transfected MSCs (sMSCs) were used to evaluate the effects of embryo cloning with SCNT in a porcine model. Cloned embryos from tMSC, eMSC, and sMSC groups were indistinguishable in their fusion rate, cleavage rate, total cell number, and gene expression levels of OCT4, SOX2 and NANOG during the blastocyst stage. The blastocyst formation rates of tMSC and sMSC groups were comparable but significantly lower than that of the eMSC group (p < 0.05). In contrast, tMSC and eMSC groups demonstrated significantly reduced apoptotic incidence (p < 0.05), and decreased BAX but increased BCL2 expression in the blastocyst stage compared to the sMSC group (p < 0.05). Therefore, MSCs transfected with telomerase reverse transcriptase do not affect the overall development of the cloned embryos in porcine SCNT, but enables to maintain embryo quality, similar to apoptotic events in SCNT embryos typically achieved by an early passage MSC. This finding offers a bioengineering strategy in improving the porcine cloned embryo quality.

Construction of CpG Motif-enriched DNA Vaccine Plasmids for Enhanced Early Immune Response

  • Park Young Seoub;Hwang Seung Ha;Choi Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • A DNA vaccine methodology using eukaryote expression vectors to produce immunizing proteins in the vaccinated hosts is a novel approach to the development of vaccine and immuno-therapeutics, and it has achieved considerable success over several infectious diseases and various cancers. To further enhance its efficiency, attempts were made to develop novel plasmid vectors containing multiple immunostimulatory CpG motifs, for rapid and strong immune response. First, a 2.9 kb compact plasmid vector (pVAC), containing CMV promoter, polycloning site, BGH poly(A) terminator, ampicillin resistance gene and pBR322 origin was constructed. A pVAC-hEPO was also constructed, which contained a human erythropoietin gene, for evaluating the transfection efficiency of naked plasmid DNA both in vitro and in vivo. To examine the adjuvant effect of multi-CpG motifs on naked plasmid DNA, 22 and 44 enriched and unmethylated CpG motifs were introduced into pVAC to generate pVAC-ISS1 and pVAC-ISS2, respectively. $100{\mu}g$ of pSecTagB, pVAC, pVAC-ISS1 or pVAC-ISS2 were each injected intramuscularly into the tibilias anterior muscle of Balb/c mice. The level of interleukin-6 induced in the mice injected with pVAC-ISS1 and pVAC-ISS2 were significantly elevated after 12 hours, which were almost 2 and 2.5 times higher than that in the mice injected with pSecTagB, respectively. These results suggest that DNA vaccine plasmids with enriched CpG motifs can induce rapid secretion of interleukin-6 by lymphocytes. In conclusion, these vectors can contribute to the development of adjuvant-free DNA vaccinations against infectious diseases and various cancers.

Bidirectional Regulation of Manganese Superoxide Dismutase (MnSOD) on the Radiosensitivity of Esophageal Cancer Cells

  • Sun, Guo-Gui;Hu, Wan-Ning;Wang, Ya-Di;Yang, Cong-Rong;Lu, Yi-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3015-3023
    • /
    • 2012
  • The mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) may represent a new type of tumor suppressor protein. Overexpression of the cDNA of this gene by plasmid or recombinant lentiviral transfection in various types of cancer leads to growth suppression both in vitro and in vivo. We previously determined that changes in MnSOD expression had bidirectional effects on adriamycin (ADR) when combined with nitric oxide (NO). Radiation induces free radicals in a manner similar to ADR, so we speculated that MnSOD combined with NO would also have a bidirectional effect on cellular radiosensitivity. To examine this hypothesis, TE-1 human esophageal squamous carcinoma cells were stably transfected using lipofectamine with a pLenti6-DEST plasmid containing human MnSOD cDNA at moderate to high overexpression levels or with no MnSOD insert. Blastidicin-resistant colonies were isolated, grown, and maintained in culture. We found that moderate overexpression of MnSOD decreased growth rates, plating efficiency, and increased apoptosis. However, high overexpression increased growth rates, plating efficiency, and decreased apoptosis. When combined with NO, moderate overexpression of MnSOD increased the radiosensitivity of esophageal cancer cells, whereas high MnSOD overexpression had the opposite effect. This finding suggests a potential new method to kill certain radioresistant tumors and to provide radioresistance to normal cells.