• Title/Summary/Keyword: transduction

Search Result 1,268, Processing Time 0.035 seconds

Mitogen-Activated Protein Kinase Kinase 3 Is Required for Regulation during Dark-Light Transition

  • Lee, Horim
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.651-656
    • /
    • 2015
  • Plant growth and development are coordinately orchestrated by environmental cues and phytohormones. Light acts as a key environmental factor for fundamental plant growth and physiology through photosensory phytochromes and underlying molecular mechanisms. Although phytochromes are known to possess serine/threonine protein kinase activities, whether they trigger a signal transduction pathway via an intracellular protein kinase network remains unknown. In analyses of mitogen-activated protein kinase kinase (MAPKK, also called MKK) mutants, the mkk3 mutant has shown both a hypersensitive response in plant hormone gibberellin (GA) and a less sensitive response in red light signaling. Surprisingly, light-induced MAPK activation in wild-type (WT) seedlings and constitutive MAPK phosphorylation in dark-grown mkk3 mutant seedlings have also been found, respectively. Therefore, this study suggests that MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark-light transition.

Proteins in the Postsynaptic Density of the Central Nervous System

  • Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.34-39
    • /
    • 1999
  • The postsynaptic density (PSD) is a cytoskeletal specialization that is involved in the regulation of synaptic signal transduction. Mainly due to the hydrophobic nature of the PSD proteins, characterization of this intriguing structure at the molecular level has been very intractable until early 1990s. However, recent development in protein microchemistry and molecular cloning techniques allowed identification and characterization of the PSD proteins. As expected, cytoskeletal proteins constitute major components of the PSD. Other major PSD proteins have been identified by protein sequencing, and their genes were used to fish out associating proteins by yeast two-hybrid system expanding our knowledge on the molecular structure of the PSD significantly. In this review, I summarize proteins that are so far identified focusing on the glutamatergic synapses.

Differential regulation of phospho-p38 and phospho-ERK by TCDD

  • Kim, Ho-jun;Cho, Sung-whan;Son, Hwa-young;Yoon, Won-kee;Jeong, Kyung-shik;Ryu, Si-yun
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.42-42
    • /
    • 2003
  • The contamination of the environment with pollutants is one of the main problems of modern life, and the levels pollution in industrialized regions are giving raise to increased public concern. The mitogen-activated protein kinase (MAP kinase) are playa pivotal role in the regulation of important cellular functions by activation of specific signal transduction pathways from cell the surface to the nuclei. Three major subgroups of MAP kinases have been identified, and these comprise the extracellular signal-regulated kinase (ERK), the c-Jun amino-terminal kinase (JNK), and the p38 MAP kinases [1-3]. Herein, we investigated the effect of regulation of phospho-JNK (p-JNK), phospho-p38 (p-p38) and phospho-ERK (p-ERK) by TCDD. (omitted)

  • PDF

Nitrated Proteome in Human Embryonic Stem Cells

  • Kang, Jeong Won;Hwang, Daehee;Kim, Kwang Pyo
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.85-90
    • /
    • 2016
  • Post-translational modifications (PTMs) of proteins regulate self-renewal and differentiation in embryonic stem cells (ESCs). Nitration of tyrosine residues of proteins in ESCs modulates their downstream pathways, which can affect self-renewal and differentiation. However, protein tyrosine nitration (PTN) in ESCs has been rarely studied. We reviewed 23 nitrated sites in stem cell proteins. Functional enrichment analysis showed that these nitrated proteins are involved in signal transduction, cell adhesion and migration, and cell proliferation in ESCs. Comparison between the nitrated and known phosphorylated sites revealed that 7 nitrated sites had overlapping phosphorylated sites, indicating functional links of PTNs to their associated signaling pathways in ESCs. Therefore, nitrated proteome provides a basis for understanding potential roles of PTN in self-renewal and differentiation of ESCs.

Molecular Mechanisms of Neutrophil Activation in Acute Lung Injury (급성 폐손상에서 호중구 활성화의 분자학적 기전)

  • Yum, Ho-Kee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.6
    • /
    • pp.595-611
    • /
    • 2002
  • Akt/PKB protein kinase B, ALI acute lung injury, ARDS acute respiratory distress syndrome, CREB C-AMP response element binding protein, ERK extracelluar signal-related kinase, fMLP fMet-Leu-Phe, G-CSF granulocyte colony-stimulating factor, IL interleukin, ILK integrin-linked kinase, JNK Jun N-terminal kinase, LPS lipopolysaccharide, MAP mitogen-activated protein, MEK MAP/ERK kinase, MIP-2 macrophage inflammatory protein-2, MMP matrix metalloproteinase, MPO myeloperoxidase, NADPH nicotinamide adenine dinucleotide phosphate, NE neutrophil elastase, NF-kB nuclear factor-kappa B, NOS nitric oxide synthase, p38 MAPK p38 mitogen activated protein kinase, PAF platelet activating factor, PAKs P21-activated kinases, PMN polymorphonuclear leukocytes, PI3-K phosphatidylinositol 3-kinase, PyK proline-rich tyrosine kinase, ROS reactive oxygen species, TNF-${\alpha}$ tumor necrosis factor-a.

Inhibition of protein tyrosine phosphatase non-receptor type 2 by PTP inhibitor XIX: Its role as a multiphosphatase inhibitor

  • Le, Hien Thi Thu;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.329-334
    • /
    • 2017
  • Protein tyrosine phosphatases (PTPs) play crucial roles in signal transduction and their functional alteration has been detected in many diseases. PTP inhibitors have been developed as therapeutic drugs for diseases that are related to the activity of PTPs. In this study, PTP inhibitor XIX, an inhibitor of CD45 and PTEN, was investigated whether it inhibits other PTPs. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) was selectively inhibited by the inhibitor in a competitive manner. Drug affinity responsive target stability (DARTS) analysis showed that the inhibitor induces conformational changes in PTPN2. Phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) at Tyr-705, a crucial site for STAT3 activation and target site of PTPN2, decreased upon exposure to the inhibitor. Our results suggest that PTP inhibitor XIX might be considered as an effective regulator of PTPN2 for treating diseases related to PTPN2.

Cell cycle-related kinase is a crucial regulator for ciliogenesis and Hedgehog signaling in embryonic mouse lung development

  • Lee, Hankyu;Ko, Hyuk Wan
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.367-372
    • /
    • 2020
  • Cell cycle-related kinase (CCRK) has a conserved role in ciliogenesis, and Ccrk defects in mice lead to developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, retinal degeneration, and polycystic kidney. Here, we found that Ccrk is highly expressed in mouse trachea and bronchioles. Ccrk mutants exhibited pulmonary hypoplasia and abnormal branching morphogenesis in respiratory organ development. Furthermore, we demonstrated that Ccrk mutant lungs exhibit not only impaired branching morphogenesis but also a significant sacculation deficiency in alveoli associated with reduced epithelial progenitor cell proliferation. In pseudoglandular stages, Ccrk mutant lungs showed a downregulation of Hedgehog (Hh) signaling and defects in cilia morphology and frequency during progenitor-cell proliferation. Interestingly, we observed that activation of the Hh signaling pathway by small-molecule smoothened agonist (SAG) partially rescued bud morphology during branch bifurcation in explants from Ccrk mutant lungs. Therefore, CCRK properly regulates respiratory airway architecture in part through Hh-signal transduction and ciliogenesis.

FINITE ELEMENT MODEL TO STUDY TWO DIMENSIONAL UNSTEADY STATE CYTOSOLIC CALCIUM DIFFUSION

  • Tewari, Shivendra Gajraj;Pardasani, Kamal Raj
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.427-442
    • /
    • 2011
  • Calcium is a vital second messenger for signal transduction in neurons. Calcium plays an important role in almost every part of the human body but in neuronal cytosol, it is of utmost importance. In order to understand the calcium signaling mechanism in a better way a finite element model has been developed to study the flow of calcium in two dimensions with time. This model assumes EBA (Excess Buffering Approximation), incorporating all the important parameters like time, association rate, influx, buffer concentration, diffusion constant etc. Finite element method is used to obtain calcium concentration in two dimensions and numerical integration is used to compute effect of time over 2-D Calcium profile. Comparative study of calcium signaling in two dimensions with time is done with other important physiological parameters. A MATLAB program has been developed for the entire problem and simulated on an x64 machine to compute the numerical results.

Design and FEM Analysis of Langevin Type Ultrasonic Vibrator (란쥬반형 초음파 진동자의 설계와 유한요소 해석)

  • 박민호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.525-528
    • /
    • 2000
  • Piezoelectric ceramics can provide electro-mechanical transduction with high stresses but low displacement. To obtain larger displacements, several mechanical amplifying structures have been used. High alternating displacements can be obtained using resonant structure. In this paper, we designed three kinds of the bolt-tightened Langevin type ultrasonic vibrators whose resonant frequencies are 30[kHz], 40[kHz]. FEM(Finite Element Methode) was employed to calculated the resonant frequencies and maximum displacements of designed vibrators. The designed resonant frequencies and computer calculated frequencies were coincided. When input voltages were increased, maximum displacements were also raised. ANSYS was used to find resonant frequencies and calculate displacements of vibrators.

  • PDF

Mechanism of Growth Hormone Action : Recent Developments - A Review

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1785-1793
    • /
    • 2001
  • The interaction of growth hormone with it's receptor results in dimerization of receptor, a feature known in action of certain cytokines. The interaction results in generation of number of signalling molecules. The involvement of Janus kinases, mitogen activated kinases, signal transduction and activator of transcription proteins, insulin like substrate, phosphatidylinositol 3-kinase, phospholipase C, protein kinase C is almost established in growth hormone action. There are still many missing links in explaining diversified activities of growth hormone. Amino acid sequence data for growth hormones and growth hormone receptors from a number of species have proved useful in understanding species specific effects of growth hormone. Complete understanding of growth hormone action can have implications in designing drugs for obtaining desired effects of growth hormone.