• Title/Summary/Keyword: transduction

Search Result 1,268, Processing Time 0.027 seconds

Transforming Growth Factor-β: Biology and Clinical Relevance

  • YiKim, Isaac;Kim, Moses M.;Kim, Seong-Jin
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Transforming growth factor-$\beta$ is a pleiotropic growth factor that has enthralled many investigators for approximately two decades. In addition to many reports that have clarified the basic mechanism of transforming growth factor-$\beta$ signal transduction, numerous laboratories have published on the clinical implication/application of transforming growth factor-$\beta$. To name a few, dysregulation of transforming growth factor-$\beta$ signaling plays a role in carcinogenesis, autoimmunity, angiogenesis, and wound healing. In this report, we will review these clinical implications of transforming growth factor-$\beta$.

Modeling Negative Stiffness Mechanism of Vestibular Hair Cell by Applying Gating Spring Hypothesis to Inverted Pendulum Array (게이팅 스프링 가설을 적용한 전정기관 유모세포의 반강성 메커니즘 모델)

  • Lim, Ko-Eun;Park, Su-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.405-408
    • /
    • 2007
  • Vestibular hair cells, the sensory receptors of vestibular organs, selectively amplify miniscule stimuli to attain high sensitivity. Such selective amplification results in compressive nonlinear sensitivity, which plays an important role in expanding dynamic range while ensuring robustness of the system. In this study, negative stiffness mechanism, a mechanism responsible for the selective amplification by vestibular hair cells, is applied to a simple mechanical system consisting of an array of inverted pendulums. The structure and working principle of the system have been inspired by gating spring hypothesis proposing that opening and closing of transduction channels contributes to the global stiffness of vestibular hair bundle. Parameter study was carried out to analyze the effect of each parameter on the compressive nonlinearity of suggested model.

  • PDF

Effects of Proto-oncogene Protein DEK on PCAF Localization

  • Lee, In-Seon;Lee, Seok-Cheol;Lee, Jae-Hwi;Seo, Sang-Beom
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.78-82
    • /
    • 2007
  • The proto-oncogene protein DEK is a nuclear binding phosphoprotein that has been associated with various human diseases including leukemia. Histone acetylation is an important post-translational modification which plays important role in transcriptional regulation. Auto-acetylation of histone acetyltransferase PCAF results in increment of its HAT activity and facilitation of its nuclear localization. In this study, we report that DEK inhibits PCAF auto-acetylation through direct interaction. The C-terminal acidic domains of DEK are responsible for the interaction with PCAF. Using confocal microscopy, we have shown that nuclear localization of PCAF is severely inhibited by DEK. Taken together, our results suggest that DEK may be involved in various cellular signal transduction pathways accommodated by PCAF through the regulation of PCAF auto-acetylation.

Molecular Mechanism of Plant Adaption to High Salinity (식물의 고염 스트레스에 대한 반응 및 적응기작)

  • Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • Plant responses to salinity stress is critical in determining the growth and development. Therefore, adaptability of plant to salinity stress is directly related with agriculture productivity. Salt adaptation is a result of the integrated functioning of numerous determinants that are regulated coordinately through an appropriate responsive signal transduction cascade. The cascade perceives the saline environment and exerts control over the essential mechanisms that are responsible for ion homeostasis and osmotic adjustment. Although little is known about the component elements of salt stress perception and the signaling cascade(s) in plant, the use of Arabidopsis plant as a molecular genetic tool has been provided important molecular nature of salt tolerance effectors and regulatory pathways. In this review, I summarize recent advances in understanding the molecular mechanisms of salt adaptation.

Magnetostrictive Grating with an Optimal Yoke for Generating High-Output Frequency-Tuned SH Waves in a Plate (최적 요크를 갖는 자기변형 그레이팅을 이용한 고출력 주파수 튜닝 평판 SH 파 발생)

  • Kim, Woo-Chul;Kim, Ik-Kyu;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.71-74
    • /
    • 2007
  • The objective of this presentation is to introduce a recent development of a magnetostrictive grating technique using an optimal yoke to efficiently generate and measure SH (Shear-Horizontal) waves in a plate. Gratings are effective means to generate frequency-tuned waves, but the gap between magnetostrictive gratings inevitably obstructs magnetic flow. Because magnetic field is the main physical quantity to actuate and sense ultrasonic waves, the transducer performance is most significantly influenced by the magnetic field distribution in the strips. Thus, wave transduction efficiency can be substantially improved if better magnetic flow is formed in the strips. To improve the efficiency, the topology optimization method was used to determine an optimal yoke configuration. A series of experiments on an aluminum plate were conducted using a grating with and without the designed yoke; when the yoke was used, the signal outputs increased up to 60 %.

  • PDF

Biochemical Application of IgG Fc-binding peptide: From Biochip to Targeted Nano Carrier

  • Chung, Sang Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.84-84
    • /
    • 2013
  • FcBP consisting of 13 amino acids specifically binds to Immunoglobulin G Fc domain. Initially, we utilized this peptide for preparation of antibody chip as a PEG composite for enhanced solubility. After then, the peptide conjugate was immobilized on agarose resin, resulting in highly efficient affinity column for antibody purification. The efficiency was comparable to commercial Protein A column. Recently, this peptide was conjugated with cell penetratingpeptide (CPP) on a backbone of GFP, affording antibody transducer, which carries antibody into live cells by simple mixing of antibody and the transducer in cell culture media. Antibody transduction into cells was monitored by live cell imaging. More recently, the FcBP was fused to ferritin cage, which consists of 24 ferritin protein molecules. The FcBP-ferritin cage showed greatly increased binding affinity to human IgG. Its binding was analyzed by QCM and SPR analysis. Finally, it was selectively delivered by Herceptin to SKBR3, a breast cancer cell, over MCF10A, non-tumorigenic cells.

  • PDF

Expressed Sequence Tags of the Wheat-rye Translocation Line Possessing 2BS/2RL

  • Jang, Cheol-Seong;Hong, Byung-Hee;Seo, Yong-Weon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.302-307
    • /
    • 1999
  • Hamlet (PI549276) possessing 2RL was obtained by cross between a wheat cultivar ND7532 (Froid/Centurk) and a rye cultivar Chaupon. Chaupon was known to have resistant gene to biotype L of Hessian fly [Mayetiola destructor (Say)] larvae. The wheat-rye translocation line (Coker797*4/Hamlet) was also known to be resistant to biotype L of Hessian fly larvae. We analysed a set of 96 ESTs from the wheat-rye translocation line (2BS/2RL). ESTs were classified by various physiological processings, such as primary metabolism, secondary metabolism, transcription, translation, transport, signal transduction, defense, transposable element, and others. Three sequences encoding thioredoxin peroxidase, 26S rRNA, and rubisco small subunits were homologous to registered genes in rye. Although limited number of clones were used to develop ESTs, these clones and their sequence information may be useful for researchers studying general physiology and molecular biology on the translocation line.

  • PDF

RGS Proteins and Opioid Signaling (Regulator of G-protein Signaling (RGS) 단백질과 아편 신호 전달)

  • Kim, Kyung Seon;Palmer, Pamela Pierce;Kim, Ki Jun
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The regulators of the G protein signaling (RGS) proteins are responsible for the rapid acceleration of the GTPase-activity intrinsic to the heterotrimeric G protein alpha subunits. As GTPase-activating proteins (GAP), the RGS proteins negatively regulate the G-protein signals. Recently, the RGS proteins are known to be one of the important regulators of opioid signal transduction and the development of tolerance. The aim of this study was to review the recent discovery and understanding of the role of RGS proteins in opioid signaling and the development of tolerance. This information will be useful for medical personnel, particularly those involved in anesthesia and pain medicine, by helping them improve the effective use of opioids and develop new drugs that can prevent opioid tolerance.

A System To Integrate The Biochemical Network Data Efficiently (생화학적 네트워크 데이터의 효율적인 통합을 위한 시스템)

  • Jung, Tae-Sung;Ahn, Myung-Sang;Cho, Wan-Sup
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.238-240
    • /
    • 2005
  • 유전자의 생물학적 기능을 밝히고 세포 내 상호작용을 이해하는 것은 post-genome era의 가장 중요한 작업 중 하나이다. 세포는 서로 다른 컴포넌트들의 상호작용에 의해 아주 복잡한 네트워크를 구성한다. 생화학적 네트워크에는 metabolic, regulatory, signal transduction과 같은 세포의 프로세스를 포함한다. 이러한 생화학적 네트워크들은 서로 다른 정보체계를 가지고 각기 다른 데이터베이스에 분산되어 저장관리 되고 있다. 따라서 생화학적 네트워크 데이터를 체계적으로 효율적으로 저장, 관리하기 위한 데이터베이스에 대한 필요성이 증대되고 있다. 본 논문에서는 기존의 생화학적 네트워크 데이터베이스의 장.단점을 분석하고 객체지향 방식에 입각한 새로운 생화학적 네트워크 데이터의 통합을 위한 시스템 모델을 제시한다. 제안된 시스템 모델은 생화학적 네트워크 데이터에 대한 생물학전 관계를 자연스럽게 표현할 수 있는 객체지향 모델을 사용하였다. 또한 생화학적 네트워크 모델을 묘사하기 위한 응용프로그램 사이의 데이터 교환의 표준언어인 SBML[2]스키마를 기반으로 하고 있다.

  • PDF

Inductively coupled nanocomposite wireless strain and pH sensors

  • Loh, Kenneth J.;Lynch, Jerome P.;Kotov, Nicholas A.
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.531-548
    • /
    • 2008
  • Recently, dense sensor instrumentation for structural health monitoring has motivated the need for novel passive wireless sensors that do not require a portable power source, such as batteries. Using a layer-by-layer self-assembly process, nano-structured multifunctional carbon nanotube-based thin film sensors of controlled morphology are fabricated. Through judicious selection of polyelectrolytic constituents, specific sensing transduction mechanisms can be encoded within these homogenous thin films. In this study, the thin films are specifically designed to change electrical properties to strain and pH stimulus. Validation of wireless communications is performed using traditional magnetic coil antennas of various turns for passive RFID (radio frequency identification) applications. Preliminary experimental results shown in this study have identified characteristic frequency and bandwidth changes in tandem with varying strain and pH, respectively. Finally, ongoing research is presented on the use of gold nanocolloids and carbon nanotubes during layer-by-layer assembly to fabricate highly conductive coil antennas for wireless communications.