Browse > Article
http://dx.doi.org/10.5010/JPB.2005.32.1.001

Molecular Mechanism of Plant Adaption to High Salinity  

Yun Dae-Jin (Division of Applied Life Science (BK21 program), and Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Publication Information
Journal of Plant Biotechnology / v.32, no.1, 2005 , pp. 1-14 More about this Journal
Abstract
Plant responses to salinity stress is critical in determining the growth and development. Therefore, adaptability of plant to salinity stress is directly related with agriculture productivity. Salt adaptation is a result of the integrated functioning of numerous determinants that are regulated coordinately through an appropriate responsive signal transduction cascade. The cascade perceives the saline environment and exerts control over the essential mechanisms that are responsible for ion homeostasis and osmotic adjustment. Although little is known about the component elements of salt stress perception and the signaling cascade(s) in plant, the use of Arabidopsis plant as a molecular genetic tool has been provided important molecular nature of salt tolerance effectors and regulatory pathways. In this review, I summarize recent advances in understanding the molecular mechanisms of salt adaptation.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11: 1195-1206   DOI
2 Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozakia K, Seki B, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11: 1743-1754   DOI
3 Villalobos MA, Bartels D, lturriaga G (2004) Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol 135: 309-324   DOI   ScienceOn
4 Winicov I, Bastola DR (1999). Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol 120: 473-480   DOI   ScienceOn
5 Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1: 771-781   DOI   ScienceOn
6 Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14: S165-S183   DOI
7 Xiong L, Zhu JK (2002) Salt tolerace. In Somerville C, Meyerowitz E, (eds) Arabidopsis book. The American Society of Plant Biology. Rockville, MD pp1-24.
8 Xiong L, Zhu JK (2003) Regulation of abscisic acid bio synthesis. Plant Physiol 133: 29-36   DOI
9 Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol 19: 765-768   DOI   ScienceOn
10 Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 23: 481-488   DOI   ScienceOn
11 Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative $Na^+/H^+$ antiporter. Proc Natl Acad Sci USA 97: 6896-6901   DOI   ScienceOn
12 Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotech 21: 81-85   DOI   ScienceOn
13 Sze H, Li X, Palmgren MG (1999) Enegrization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell 11: 677-689   DOI
14 Shi H, Zhu JK (2002) Regulation of expression of the vacuolar $Na^+/H^+$ antiporter gene AtNHX1 by salt stress and ABA. Plant Mol Biol 50: 543-550   DOI   ScienceOn
15 Shin D, Koo VD, Lee H, Baek D, Lee S, Cheon C, Kwak SS, Lee S, Yun DJ (2004) Athb-12, homeobox-Iecucin zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem Biophys Res Commun 323: 534-540   DOI   ScienceOn
16 Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1, and AXR2 in Arabidopsis. Plant J 12: 557-569   DOI   ScienceOn
17 Tarczynski M, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508-510   DOI   ScienceOn
18 Quintero FJ, Ohta M, Shi H, Zhu J-K, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99: 9061-9066   DOI   ScienceOn
19 Rhoades JD, Loveday J (1990) Salinity in irrigated agriculture. in American Society of Civil Engineers, Irrigation of Agricultural Crops (Steward BA and Nielsen DR eds), Am Soc Agronomists, Monograph 30, 1089-1142
20 Romero C, Belles JM, Vaya JL, Serrano R, Culiaez-Maci FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants, pleiotropic phenotypes include drought tolerance, Planta 201: 293-297   DOI   ScienceOn
21 Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single $Ca^{2+}-dependent$ protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23: 319-327   DOI   ScienceOn
22 Roxas VR, Smigh JRK, Alien ER, Alien RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress, Nature Biotech 15: 988-991   DOI   ScienceOn
23 Rus A, Lee B-h, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na + homeostasis and K+ nutrition in Planta. Plant Physiol 136: 2500-2525   DOI   ScienceOn
24 Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee B-h, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHK1 is a salt tolerance determinant that controls Na + entry into plant roots. Proc Natl Acad Sci USA 98: 14150-14155   DOI   ScienceOn
25 Saleki R, Young P, Lefebvre DD (1993) Mutants of Arabidopsis thaliana capable of germination under saline conditions. Plant Physiol 101: 839-845   DOI
26 Pardo JM, Reddy MP, Yang S, Maggio A, Huh G-H, Matsumoto T, Coca MA, Paino-D'Urazo M, Koiwa H, Yun D-J, Watad AA, Bressan RA, Hasegawa PM (1998) Stress signalling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci USA 95: 9681-9686   DOI
27 Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13: 1035-1046   DOI
28 Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiol 136: 2548-2555   DOI   ScienceOn
29 Piao HL, Pih KT, Lim JH, Kang SG, Jin JB, Kim SH, Hwang I (1999) An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants in induced by NaCl and abscisic acid. Plant Physiol 119: 1527-1534   DOI
30 Posas F, Camps M, Arino J (1995) The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J Biol Chem 207: 13036-13041
31 Quesada, V, Ponce MR, Micol JL (2000) Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154: 1
32 Qui QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99: 8436-8441   DOI   ScienceOn
33 Quintero FJ, Garciadeblas B, Rodriguez-Navarro A (1996) The SALl gene of Arabidopsis, encoding an enzyme with 3' (2'), 5' -bisphosphate nucleotide and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 8: 529-537   DOI
34 Mizoguchi T, Irie K, Hirayam T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a MAP kinase kinase kinase is induced simultaneously with genes for a MAP kinase and an S6 kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93: 765-769   DOI
35 Nakayama H, Yoshida K, Ono H, Murooka Y, Shinmyo A (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol 122: 1239-1247   DOI
36 Nomura M, lshitani M, Takabe T, Rai AK, Takabe T (1995) Synechococcus sp. PCC7942 transformed with Escherichia coli bet genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiol 107: 703-708   DOI
37 Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, YamaguchiShinozaki K, Shinozaki K (1999) Antisense suppression of praline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461: 205-210   DOI   ScienceOn
38 Nelson DE, Shen B, Bohnert HJ (1998) Salinity tolerance mechanisms, models, and the metabolic engineering of complex traits. In Genetic Engineering, Principles and Methods, ed JK Setlow, pp 153-176, Vol. 20, New York: Plenum Prenum
39 Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109: 735-742   DOI
40 Nylander M, Heino P, Helenius E, Palva ET, Ronne H, Welin BV (2001) The low-temperature- and salt-induced RCl2A gene of Arabidopsis complements the sodium sensitivity caused by a deletion of the homologous yeast gene SNA1. Plant Mol Biol 45: 341-351   DOI   ScienceOn
41 Ono H, Sawada K, Khunajakr N, Tao T, Yamamoto M, Hiramoto M, Shinmyo A, Takano M, Murooka Y (1999) Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bact 181: 91-99
42 Martinez V, Luchli A (1993) Effects of Ca2+ on the salt-stress response of barley roots as observed by in-vivo 31P-nuclear magnetic resonance and in-vitro analysis. Planta 190: 519-524
43 Matsumoto TK, Pardo JM, Takeda S, Bressan RA, Hasegawa PM (2001) Tobacco and Arabidiopsis SLT1 mediate salt tolerance of yeast. Plant Mol Biol 45: 489-500   DOI   ScienceOn
44 Mendoza I, Quintero FJ, Bressan RA, Hasegawa PM, Pardo JM (1996) Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J Biol Chem 227: 23061-23067
45 Mazel, A, Leshem, Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134: 118-128   DOI   ScienceOn
46 McCue KF, Hanson AD (1990) Drought and salt tolerance: Towards understanding and application. Biotechnol. 8: 358-362   DOI
47 McKersie BD, Bowley SR, Harjanto E, Leprince O (1996). Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111: 1177-1181   DOI
48 Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM (1994) The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem 269: 8792-8796
49 Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance tocold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101: 6309-6314   DOI   ScienceOn
50 Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12: 1067-1078   DOI   ScienceOn
51 Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA 9: 4718-4723
52 Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49: 199-222   DOI
53 Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in E. coli. Microbiol 143: 1141-11   DOI
54 Lippuner V, Cyert MS, Gasser CS (1996) Two classes of plant cDNA clones differentially complement yeast calcinerin mutants and increase salt tolerance of wild type yeast. J Biol Chem 271: 12859-12866   DOI   ScienceOn
55 Liu J, Zhu JK (1997) An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA 94: 14960-14964   DOI   ScienceOn
56 Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salttolerance. Science 280: 1943-1945   DOI   ScienceOn
57 Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269: 554-558   DOI
58 Maeda T, Wurgler-Murphy SM, Saito H (1994) A twocomponent system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369: 242-245   DOI   ScienceOn
59 Hong Z, Lakkineni ?, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122: 1129-1136   DOI
60 Inan G, Zhang Q, Li P, Wang Z, CaD Z, Zhang H, lhang C, Quist TM, Goodwin SM, lhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu J-K (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135: 1718-1737   DOI   ScienceOn
61 Jeong MJ, Park SC, Byun MO (2001) Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3-phosphate dehydrogenase gene transfer. Mol Cell 12: 185-189
62 Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol Biol 48: 377-403
63 Ishitani M, Xiong L, Stevenson B, Zhu J-K (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9: 1935-1949   DOI   ScienceOn
64 Iuchi, S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2000) A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol 123: 553-562   DOI
65 Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42: 74-84   DOI   ScienceOn
66 Geisler M, Frange N, Gomes E, Martinoia E, Palmgren MG (2000). The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol 124: 1814-1827   DOI
67 Guern J, Mathieu Y, Kurkdjian A (1989) Regulation of vacuolar pH in plant cells. Plant Physiol 89: 27-36   DOI   ScienceOn
68 Hasegawa PM, Bressa RA, Zhu J-K, Bohnert H (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499   DOI
69 Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6: 470-479   DOI   ScienceOn
70 Hayashi H, Mustardy L, Deshnium P, Ida M, Murata N (1997). Transformation of Arabidopsis thalianawith the coda gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to saIt and cold stress. Plant J 12: 133-142   DOI   ScienceOn
71 Hirschi, KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11: 2113-2122   DOI
72 Hirschi, KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136: 2438-2442   DOI   ScienceOn
73 Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 postassium channel in plant nutrition. Science 280: 918-921   DOI   ScienceOn
74 Holmstrom, KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51: 177-185   DOI   ScienceOn
75 Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Horticult 78: 237-260
76 Audran C, Borel C, Frey A, Sotta B, Meyer C, Simonneau T, Marion-Poll A (1998) Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol 118: 102-110
77 Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 3736-3740   DOI   ScienceOn
78 Alvim FC, Carolina SM, Cascardo JC, Nunes CC, Martinez CA, Otoni WC, Fontes EP (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126: 1042-1054   DOI
79 Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258   DOI   ScienceOn
80 Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. In, (eds) Advances in Botanical Research. Academic Press, pp 76-114
81 Flowers, TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28: 89-121   DOI
82 Garciadeblas B, Rubio F, Quintero FJ, Bauelos MA, Haro R, Rodriguez-Navarro A (1993) Differential expession of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236: 363-368   DOI
83 Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96: 1480-1485   DOI   ScienceOn
84 Ellul P, RiDS G, Atares A, Roig LA, Serrano R, Moreno V (2003) The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun and Nakai]. Theor Appl Genet 107: 462-469   DOI
85 Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223   DOI   ScienceOn
86 terization of ARAKIN (ATMEKK1): a possCovic L, Silva NF, Lew RR (1999) Functional characible mediator in an osmotic stress response pathway in higher plants. Biochim Biophys Acta 1451: 242-252   DOI   ScienceOn
87 Dietz KJ, Tavakoli N, Kluge C, Miura T, Sharma SS, Harris GC, Chardonnens AN, Golldack, D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52: 1969-1980   DOI   ScienceOn
88 Cunningham KW, Fink GR (1996) Calcineurin inhibits VCX1-depentdent H+/Ca+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16: 2226-2237   DOI
89 Cramer GR, Lynch J, Luchli A, Epstein E (1987) Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings. Plant Physiol 83: 510-516   DOI   ScienceOn
90 Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu J-K (2001) Learning from the Arabidopsis Experience, The next gene search paradigm. Plant Physiol 127: 1354-1360   DOI   ScienceOn
91 Covic L, Lew RR (1996) Arabidopsis thaliana cDNA isolated by functional complementation shows homology to serine/threonine protein kinases. Biochim Biophys Acta 1305: 125-129   DOI   ScienceOn
92 Blumwald E, Poole RJ (1985) Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78: 163-167   DOI   ScienceOn
93 Espinosa-Ruiz A, Belles JM, Serrano R, Gulianez-Macia FA (1999) Arabidopsis thaliana AtHAL3: a flavoproteinrelated to salt and osmotic tolerance and plant growth. Plant J 20: 529-539   DOI   ScienceOn
94 Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6: 441-445   DOI   ScienceOn
95 Dreyer I, Horeu C, Lemaillet G, Zimmermann S, Bush DR, Rodriguez-Navarro A, Schachtman DP, Spalding EP, Sentenac H, Gaber RF (1999) Identification and characterization of plant transporters using heterologous expression systems. J Exptl Bot 50: 1073-1087   DOI
96 Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124: 941-948   DOI   ScienceOn
97 Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6: 66-71   DOI   ScienceOn
98 Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247-273   DOI