• Title/Summary/Keyword: transcriptomes

Search Result 68, Processing Time 0.019 seconds

Transcriptome analyses of the ginseng root rot pathogens Cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms

  • Li, Taiying;Kim, Jin-Hyun;Jung, Boknam;Ji, Sungyeon;Seo, Mun Won;Han, You Kyoung;Lee, Sung Woo;Bae, Yeoung Seuk;Choi, Hong-Gyu;Lee, Seung-Ho;Lee, Jungkwan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.161-167
    • /
    • 2020
  • Background: The ascomycete fungi Cylindrocarpon destructans (Cd) and Fusarium solani (Fs) cause ginseng root rot and significantly reduce the quality and yield of ginseng. Cd produces the secondary metabolite radicicol, which targets the molecular chaperone Hsp90. Fs is resistant to radicicol, whereas other fungal genera associated with ginseng disease are sensitive to it. Radicicol resistance mechanisms have not yet been elucidated. Methods: Transcriptome analyses of Fs and Cd mycelia treated with or without radicicol were conducted using RNA-seq. All of the differentially expressed genes (DEGs) were functionally annotated using the Fusarium graminearum transcript database. In addition, deletions of two transporter genes identified by RNA-seq were created to confirm their contributions to radicicol resistance. Results: Treatment with radicicol resulted in upregulation of chitin synthase and cell wall integrity genes in Fs and upregulation of nicotinamide adenine dinucleotide dehydrogenase and sugar transporter genes in Cd. Genes encoding an ATP-binding cassette transporter, an aflatoxin efflux pump, ammonium permease 1 (mep1), and nitrilase were differentially expressed in both Fs and Cd. Among these four genes, only the ABC transporter was upregulated in both Fs and Cd. The aflatoxin efflux pump and mep1 were upregulated in Cd, but downregulated in Fs, whereas nitrilase was downregulated in both Fs and Cd. Conclusion: The transcriptome analyses suggested radicicol resistance pathways, and deletions of the transporter genes indicated that they contribute to radicicol resistance.

Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance

  • Han, Narae;Wi, Jiwoong;Im, Sungoh;Lim, Ka-Min;Lee, Hun-Dong;Jeong, Won-Joong;Kim, Geun-Joong;Kim, Chan Song;Park, Eun-Jeong;Hwang, Mi Sook;Choi, Dong-Woog
    • ALGAE
    • /
    • v.36 no.3
    • /
    • pp.207-217
    • /
    • 2021
  • An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.

The study of blood transcriptome profiles in Holstein cows with miscarriage during peri-implantation

  • Zhao, Guoli;Li, Yanyan;Kang, Xiaolong;Huang, Liang;Li, Peng;Zhou, Jinghang;Shi, Yuangang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.38-48
    • /
    • 2019
  • Objective: In this study, the transcriptome profile of cow experiencing miscarriage during peri-implantation was investigated. Methods: Total transcriptomes were checked by RNA sequencing, and the analyzed by bioinformatics methods, the differentially expressed genes (DEGs) were analysed with hierarchical clustering and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Results: The results suggested that serum progesterone levels were significantly decreased in cows that miscarried as compared to the pregnant cows at 18, 21, 33, 39, and 51 days after artificial insemination. The RNA sequencing results suggested that 32, 176, 5, 10, and 2 DEGs were identified in the pregnant cows and miscarried cows at 18, 21, 33, 39, and 51 d after artificial insemination. And 15, 101, 1, 2, and 2 DEGs were upregulated, and 17, 74, 4, and 8 DEGs were downregulated in the cows in the pregnant and miscarriage groups, respectively at 18, 21, 33, and 39, but no gene was downregulated at 51 d after artificial insemination. These DEGs were distributed to 13, 20, 3, 6, and 20 pathways, and some pathway essential for pregnancy, such as cell adhesion molecules, tumor necrosis factor signaling pathway and PI3K-Akt signaling pathway. Conclusion: This analysis has identified several genes and related pathways crucial for pregnancy and miscarriage in cows, as well as these genes supply molecular markers to predict the miscarriage in cows.

Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.572-579
    • /
    • 2019
  • Background: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. Methods: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. Results: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. Conclusion: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

Selection of candidate genes affecting meat quality and preliminary exploration of related molecular mechanisms in the Mashen pig

  • Gao, Pengfei;Cheng, Zhimin;Li, Meng;Zhang, Ningfang;Le, Baoyu;Zhang, Wanfeng;Song, Pengkang;Guo, Xiaohong;Li, Bugao;Cao, Guoqing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1084-1094
    • /
    • 2019
  • Objective: The aim of this study was to select the candidate genes affecting meat quality and preliminarily explore the related molecular mechanisms in the Mashen pig. Methods: The present study explored genetic factors affecting meat quality in the Mashen pig using RNA sequencing (RNA-Seq). We sequenced the transcriptomes of 180-day-old Mashen and Large White pigs using longissimus dorsi to select differentially expressed genes (DEGs). Results: The results indicated that a total of 425 genes were differentially expressed between Mashen and Large White pigs. A gene ontology enrichment analysis revealed that DEGs were mainly enriched for biological processes associated with metabolism and muscle development, while a Kyoto encyclopedia of genes and genomes analysis showed that DEGs mainly participated in signaling pathways associated with amino acid metabolism, fatty acid metabolism, and skeletal muscle differentiation. A MCODE analysis of the protein-protein interaction network indicated that the four identified subsets of genes were mainly associated with translational initiation, skeletal muscle differentiation, amino acid metabolism, and oxidative phosphorylation pathways. Conclusion: Based on the analysis results, we selected glutamic-oxaloacetic transaminase 1, malate dehydrogenase 1, pyruvate dehydrogenase 1, pyruvate dehydrogenase kinase 4, and activator protein-1 as candidate genes affecting meat quality in pigs. A discussion of the related molecular mechanisms is provided to offer a theoretical basis for future studies on the improvement of meat quality in pigs.

Trophoblast Cell Subtypes and Dysfunction in the Placenta of Individuals with Preeclampsia Revealed by Single-Cell RNA Sequencing

  • Zhou, Wenbo;Wang, Huiyan;Yang, Yuqi;Guo, Fang;Yu, Bin;Su, Zhaoliang
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.317-328
    • /
    • 2022
  • Trophoblasts, important functional cells in the placenta, play a critical role in maintaining placental function. The heterogeneity of trophoblasts has been reported, but little is known about the trophoblast subtypes and distinctive functions during preeclampsia (PE). In this study, we aimed to gain insight into the cell type-specific transcriptomic changes by performing unbiased single-cell RNA sequencing (scRNA-seq) of placental tissue samples, including those of patients diagnosed with PE and matched healthy controls. A total of 29,006 cells were identified in 11 cell types, including trophoblasts and immune cells, and the functions of the trophoblast subtypes in the PE group and the control group were also analyzed. As an important trophoblast subtype, extravillous trophoblasts (EVTs) were further divided into 4 subgroups, and their functions were preliminarily analyzed. We found that some biological processes related to pregnancy, hormone secretion and immunity changed in the PE group. We also identified and analyzed the regulatory network of transcription factors (TFs) identified in the EVTs, among which 3 modules were decreased in the PE group. Then, through in vitro cell experiments, we found that in one of the modules, CEBPB and GTF2B may be involved in EVT dysfunction in PE. In conclusion, our study showed the different transcriptional profiles and regulatory modules in trophoblasts between placentas in the control and PE groups at the single-cell level; these changes may be involved in the pathological process of PE, providing a new molecular theoretical basis for preeclamptic trophoblast dysfunction.

Transcriptome Analysis Reveals the Putative Polyketide Synthase Gene Involved in Hispidin Biosynthesis in Sanghuangporus sanghuang

  • Jiansheng Wei;Liangyan Liu;Xiaolong Yuan;Dong Wang;Xinyue Wang;Wei Bi;Yan Yang;Yi Wang
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.360-371
    • /
    • 2023
  • Hispidin is an important styrylpyrone produced by Sanghuangporus sanghuang. To analyze hispidin biosynthesis in S. sanghuang, the transcriptomes of hispidin-producing and non-producing S. sanghuang were determined by Illumina sequencing. Five PKSs were identified using genome annotation. Comparative analysis with the reference transcriptome showed that two PKSs (ShPKS3 and ShPKS4) had low expression levels in four types of media. The gene expression pattern of only ShPKS1 was consistent with the yield variation of hispidin. The combined analyses of gene expression with qPCR and hispidin detection by liquid chromatography-mass spectrometry coupled with ion-trap and time-of-flight technologies (LCMS-IT-TOF) showed that ShPKS1 was involved in hispidin biosynthesis in S. sanghuang. ShPKS1 is a partially reducing PKS gene with extra AMP and ACP domains before the KS domain. The domain architecture of ShPKS1 was AMP-ACP-KS-AT-DH-KR-ACP-ACP. Phylogenetic analysis shows that ShPKS1 and other PKS genes from Hymenochaetaceae form a unique monophyletic clade closely related to the clade containing Agaricales hispidin synthase. Taken together, our data indicate that ShPKS1 is a novel PKS of S. sanghuang involved in hispidin biosynthesis.

Skin Transcriptome Profiling of the Blass Bloched Rockfish (Sebastes pachycephalus) with Different Body Color Patterns (체색 패턴이 다른 개볼락(Sebastes pachycephalus) 피부 전사체 프로파일링)

  • Jang, Yo-Soon
    • Korean Journal of Ichthyology
    • /
    • v.32 no.3
    • /
    • pp.117-129
    • /
    • 2020
  • The body color pattern in fish is a distinctive feature for species identification. The blass bloched rockfish Sebastes pachycephalus is a commercially important marine fish species, distributed in the central and southern parts of Korea and south Hokkaido of Japan. It has a morphological feature divided into four subspecies according to with or lacking distinct spots on the body surface, and to the location of markings on the body surface. However, the genetic basis of body color pattern of S. pachycephalus is still unknown. Thus we analyzed the transcriptome of S. pachycephalus skin samples using RNA-seq analysis to investigate functional genes related to body color patterns. The experimental skin samples were prepared by classified into 'Wild type' (lacking distinct spots and markings) and 'Color type' (with distinct spots and marking). Two skin sample transcriptomes were compared pairwise and the results revealed that were 164 differentially expressed unigenes in the skin samples of 'Wild type' and 'Color type'. Gene Ontology analysis of 164 differentially expressed unigenes showed that these genes were included in the functional group of molecular function (2 genes), biological process (46 genes), and cellular component (6 genes). There were several genes that body color type skin specific expression and the genes were CTL (Galactose-specific lectin nattectin), CUL1 (Cullin-1), CMAS (N-acylneuraminate cytidylyltransferase), NMRK2 (Nicotinamide riboside kinase 2), ALOXE3 (Hydroperoxide isomerase ALOXE3), SLC4A7 (sodium bicarbonate cotransporter 3). Our study is the first attempt to search for functional genes involved in the formation of body color patterns in S. pachycephalus. The differentially expressed unigenes obtained in this study can be used as candidate genes for functional gene study related to body coloration of fish.

Temporal expression profiling of long noncoding RNA and mRNA in the peripheral blood during porcine development

  • Gu, Yiren;Zhou, Rui;Jin, Long;Tao, Xuan;Zhong, Zhijun;Yang, Xuemei;Liang, Yan;Yang, Yuekui;Wang, Yan;Chen, Xiaohui;Gong, Jianjun;He, Zhiping;Li, Mingzhou;Lv, Xuebin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.836-847
    • /
    • 2020
  • Objective: We investigated the temporal expression profiles of long noncoding RNA (lncRNA) and mRNA in the peripheral blood of pigs during development and identified the lncRNAs that are related to the blood-based immune system. Methods: Peripheral blood samples were obtained from the pigs at 0, 7, 28, and 180 days and 2 years of age. RNA sequencing was performed to survey the lncRNA and mRNA transcriptomes in the samples. Short time-series expression miner (STEM) was used to show temporal expression patterns in the mRNAs and lncRNAs. Gene ontology and Kyoto encyclopedia of genes and genomes analyses were performed to assess the genes' biological relevance. To predict the functions of the identified lncRNAs, we extracted mRNAs that were nearby loci and highly correlated with the lncRNAs. Results: In total of 5,946 lncRNA and 12,354 mRNA transcripts were identified among the samples. STEM showed that most lncRNAs and mRNAs had similar temporal expression patterns during development, indicating the expressional correlation and functional relatedness between them. The five stages were divided into two classes: the suckling period and the late developmental stage. Most genes were expressed at low level during the suckling period, but at higher level during the late stages. Expression of several T-cell-related genes increased continuously during the suckling period, indicating that these genes are crucial for establishing the adaptive immune system in piglets at this stage. Notably, lncRNA TCONS-00086451 may promote blood-based immune system development by upregulating nuclear factor of activated T-cells cytoplasmic 2 expression. Conclusion: This study provides a catalog of porcine peripheral blood-related lncRNAs and mRNAs and reveals the characteristics and temporal expression profiles of these lncRNAs and mRNAs during peripheral blood development from the newborn to adult stages in pigs.

De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

  • Jo, Yeonhwa;Choi, Hoseong;Bae, Miah;Kim, Sang-Min;Kim, Sun-Lim;Lee, Bong Choon;Cho, Won Kyong;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.478-487
    • /
    • 2017
  • Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV), infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs) for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.