Since database management systems(DBMSS) have limited lock resources, transactions requesting locks beyond the limit mutt be aborted. In the worst carte, if such transactions are aborted repeatedly, the DBMS can become paralyzed, i.e., transaction execute but cannot commit. Lock escalation is considered a solution to this problem. However, existing lock escalation methods do not provide a complete solution. In this paper, we prognose a new lock escalation method, adaptive lock escalation, that selves most of the problems. First, we propose a general model for lock escalation and present the concept of the unescalatable look, which is the major cause making the transactions to abort. Second, we propose the notions of semi lock escalation, lock blocking, and selective relief as the mechanisms to control the number of unescalatable locks. We then propose the adaptive lock escalation method using these notions. Adaptive lock escalation reduces needless aborts and guarantees that the DBMS is not paralyzed under excessive lock requests. It also allows graceful degradation of performance under those circumstances. Third, through extensive simulation, we show that adaptive lock escalation outperforms existing lock escalation methods. The results show that, compared to the existing methods, adaptive lock escalation reduces the number of aborts and the average response time, and increases the throughput to a great extent. Especially, it is shown that the number of concurrent transactions can be increased more than 16 ~256 fold. The contribution of this paper is significant in that it has formally analysed the role of lock escalation in lock resource management and identified the detailed underlying mechanisms. Existing lock escalation methods rely on users or system administrator to handle the problems of excessive lock requests. In contrast, adaptive lock escalation releases the users of this responsibility by providing graceful degradation and preventing system paralysis through automatic control of unescalatable locks Thus adaptive lock escalation can contribute to developing self-tuning: DBMSS that draw a lot of attention these days.
Kim Dongkyu;Lee Sang-goo;Chun Jonghoon;Choi Dong-Hoon
Journal of KIISE:Databases
/
v.33
no.1
/
pp.102-116
/
2006
Electronic catalogs (or e-catalogs) hold information about the goods and services offered or requested by the participants, and consequently, form the basis of an e-commerce transaction. Catalog management is complicated by a number of factors and product classification is at the core of these issues. Classification hierarchy is used for spend analysis, custom3 regulation, and product identification. Classification is the foundation on which product databases are designed, and plays a central role in almost all aspects of management and use of product information. However, product classification has received little formal treatment in terms of underlying model, operations, and semantics. We believe that the lack of a logical model for classification Introduces a number of problems not only for the classification itself but also for the product database in general. It needs to meet diverse user views to support efficient and convenient use of product information. It needs to be changed and evolved very often without breaking consistency in the cases of introduction of new products, extinction of existing products, class reorganization, and class specialization. It also needs to be merged and mapped with other classification schemes without information loss when B2B transactions occur. For these requirements, a classification scheme should be so dynamic that it takes in them within right time and cost. The existing classification schemes widely used today such as UNSPSC and eClass, however, have a lot of limitations to meet these requirements for dynamic features of classification. In this paper, we try to understand what it means to classify products and present how best to represent classification schemes so as to capture the semantics behind the classifications and facilitate mappings between them. Product information implies a plenty of semantics such as class attributes like material, time, place, etc., and integrity constraints. In this paper, we analyze the dynamic features of product databases and the limitation of existing code based classification schemes. And describe the semantic classification model, which satisfies the requirements for dynamic features oi product databases. It provides a means to explicitly and formally express more semantics for product classes and organizes class relationships into a graph. We believe the model proposed in this paper satisfies the requirements and challenges that have been raised by previous works.
In moral instruction, one of the important purposes is cultivate students' meaningful moral knowing. To obtain this purpose, generally systems approach has been adopted and used in moral instruction. Systems approach has emphasized efficient designs which do not occur incidental learning that does not contribute to obtain learning objectives. However, moral meaning may occur to the subject of knowing, then occurrence of coincidence can not be excluded. If we approach to moral instruction with operative and engineering ways, we may convey the learning object but it won't be received meaningfully. Because of such problem, moral instruction has been required an alternative perspective contrary to the systems approach. Above all we need to reconsider the logic of explanation based on the systems approach. Because the moral instruction is understood that it is a systematic and operative act according to the logic of explanation. According to the logic of explanation, education is an act that conveys the teachers' knowledge to students who have inferior knowledge to teachers'. During this process, students' interpretation has been overlooked. In moral instruction, the teachers' interpretation of moral meaning can occur and extend by students' interpretation. When we understand moral instruction as the course of alliance between interpretation, it could be stood out that teaching as a symbol, constitution of teaching text as a vacuum, learning as a coincidence. When we stand out these aspects, the moral instruction could be understand as a poetic act. And based on such understanding, we can abstract specific resemblances between the poetic act and the moral instruction. There are semantic invariants and semantic variants in the teaching text of moral instruction. The semantic variants premise uncertainty. The limitation, that is, semantic invariants and the openness which is possible within semantic variants are changed to the moral instruction by students' response. It is essential that a selective attention as esthetic transaction that could be changed from text to poet. Like this, we need to take notice of instructive aspects not to means for reaching learning objectives but to act for being possible disinterested experiential learning.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.16
no.4
/
pp.153-165
/
2021
With the disappearance of boundaries between online and offline, the O2O(online to offline) platform service is rapidly growing. Unlike general products, freshness is an important decision-making factor for agri-food, and there are many limiting factors for growth as an open market among O2O platforms due to the characteristics of difficult refunds and exchanges compared to other items and new transaction methods. In order to overcome these obstacles, consumer innovation must be considered. The purpose of this study was to investigate the influence of O2O(online to offline) platform characteristics perception on agri-food repurchase intentions. And an empirical survey of the hypothesis is made that innovation will show a moderating effect between agri-food O2O platform characteristics and repurchase intention. And an empirical survey of the hypothesis is made that innovation will show a moderating effect between agri-food O2O platform characteristics and repurchase intention. For this purpose, Using a convenience sampling technique, an online survey was conducted through Google survey from April 1 to April 15, 2021. A total of final analysis data were collected from a total of 270 purchase experienced of agri-food O2O(online to offline) platform. The SPSS program was used for analysis, and multiple regression analysis was used for hypothesis verification. The results showed that Economic, Interaction, and Playfulness had a significant positive effect on agri-food repurchase intend. Also, Interactivity × innovation, playfulness × innovation were found to have a significant positive (+) effect on repurchase intention. The results of this study show that innovation reduces the burden on consumers for new systems and mobile transactions. The results of this study suggest that convenient interface design is important for activating O2O transactions of agri-food. In addition, education and support are needed to strengthen the IT competency of farmers. The results of this study will be able to contribute to the establishment of infrastructure for agri-food open market shopping malls. In future studies, the influence of the O2O platform type on the purchase intention should be studied continuously.
Unlike other government agencies, the city of Seoul experienced a three-year gap between the establishment of a function classification system and the introduction of a business management system. As a result, the city has been unable to manage the current status of the function classification system, and this impeded the establishment of standards for records management. In September 2012, the Seoul Metropolitan Government integrated the department in charge of the standard sheet for record management with the department of function classification system into a new department: "Information Disclosure Policy Division." This new department is mainly responsible for record management and information disclosure, and taking this as an opportunity, the city government has pushed ahead with the maintenance project on BRM and Standards for Record Management (hereby "BRM maintenance project") over the past two years, from 2013 to 2014. The study was thus conducted to introduce the case for the improvement of standards for record management through the BRM maintenance project by mainly exploring the case of Seoul. During the BRM maintenance project, Seoul established a unique methodology to minimize the gap between the operation of a business management system and the burden of the person in charge of the BRM maintenance project. Furthermore, after the introduction of the business management system, the city government developed its own processes and applied the maintenance result to the system in close cooperation with the related departments, despite the lack of precedence on the maintenance of the classification system. In addition, training for the BRM managers of the department has taken place twice -before and after the maintenance-for the successful performance of the BRM maintenance project and the stable operation of the project in the future. During the period of maintenance, newsletters were distributed to all employees in an effort to induce their active participation and increase the importance of records management. To keep the performance of the maintenance project and to systematically manage BRM in the future, the city government has mapped out several plans for improvement: to apply the "BRM classification system of each purpose" to the service of the "Seoul Open Data Plaza"; to reinforce the function for task management in the business management system; and to develop the function of a records management system for the unit tasks. As such, the researchers hope that this study would serve as a helpful reference so that the organizations-which had planned to introduce BRM or to perform the maintenance project on classification system-experience fewer trials and errors.
The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.
Most of Korea's Kyungmaedorock(auction book: 競賣圖錄) and pictorial record of exhibitions in the modern times were usually published in the 1930s. Although 1930s were periods of the Great Depression when economic slump continued because of the aftereffect of the slump in the stocks issued by the US in 1929, during this period, Japan began regular continental invasion starting from invasion of the northeastern area of China. To curio dealers, the 1930s were 'boom period of curio transaction' and in urban cultural aspects, the period is evaluated as the one when the first step of modernism was formed. Collection, photo-printing and arrangement of the data related to modern exhibitions including the Auction Book being published at that time are very important because they enable us to know characteristics of fine arts in the transition period from paintings & writings to fine arts in addition to enabling us to revert the circulation history of our paintings & writings and curios. Furthermore, these data will become important data for reconstitution of the circulation history of the Eastern Asia's modern art works. Although the pictorial record of Joseon's Exhibitions of Chinaware and Wooden Works(朝鮮陶磁木工展) is a small and thin one, it records our country's high level chinaware and wooden works. Although we can't know the exact time for 'Joseon's exhibitions of chinaware and wooden works', they are assumed to have been held in Tokyo, Japan in the 1930s and there seems to have been sale of works, too. As such, studies of the books such as the auction book and exhibitions under Japanese imperialism have the first importance in the fact that through which we can examine the course of outflow of our art works to Japan. Furthermore, they can be studies of art-sociology that examine flow and phase of recognition and taste of art works of those days. And from now on, comparative studies of auctions and exhibitions being held in Japan such as Tokyo, Osaka and etc. as well as art markets in Seoul during modern times would also be necessary.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.16
no.1
/
pp.147-159
/
2021
After the 2020 Corona 19 pandemic, consumers' online consumption is increasing rapidly, and non-store online retail channels are showing high growth. In particular, social media is gaining its status as a social media market where direct transactions take place in the means of promoting companies' brands and products. In this study, changes in consumer behavior after the Corona 19 pandemic are different in choosing online shopping media such as existing online shopping malls and SNS markets that can be classified into open social media and closed social media when purchasing agri-food online. We tried to find out what type of product is preferred in the selection of agri-food products. For this study, demographic characteristics of consumers, perceived risk of consumers, and dietary lifestyle were set as independent variables to investigate the effect on online shopping media type and product selection. The summary of the empirical analysis results is as follows. When consumers purchase agri-food online, there are significant differences in demographic characteristics, consumer perception risks, and detailed factors of dietary lifestyle in selecting shopping channels such as online shopping malls, open social media, and closed social media. Appeared to be. The consumers who choose the open SNS market are higher in men than in women, with lower household income, and higher in consumers seeking health and taste. Consumers who choose the closed SNS market were analyzed as consumers who live in rural areas and have a high degree of risk perception for delivery. Consumers who choose existing online shopping malls have high educational background, high personal income, and high consumers seeking taste and economy. Through this study, we tried to provide practical assistance by providing a basis for judgment to farmers who have difficulty in selecting an online shopping medium suitable for their product characteristics. As a shopping channel for agri-food, social media is not a simple promotional channel, but a direct transaction. It can be differentiated from existing studies in that it is approached as a market that arises.
Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.16
no.6
/
pp.69-84
/
2021
As industrial structural changes in the 4th Industrial Revolution have recently led to the need for fostering high-tech industries and high-tech manufacturing industries have been showing high value-added creation, the importance of high-tech manufacturing ventures has increased a lot as well. As a result of this, the government is actively supporting and fostering them. However, it appears that high-tech manufacturing ventures seem to have a lot of difficulty in securing competitive advantages due to the lack of internal core competencies and experience in the rapidly changing international economic conditions. In order for high-tech manufacturing ventures to strengthen internal core competencies, external collaborations with other companies or institutions which have diverse experience, technology skills and abundant resources are actively promoted. Accordingly, based on resource-based theory and transaction cost theory, the authors analyzed the effects of the high-tech manufacturing ventures'external collaborations on internal core competencies and management performance in this study. In order to verify the hypothesis of this study, the 2020 data on"The Research on the Precision Status of Ventures'compiled by the Ministry of SMEs and Startups since 1999 were utilized. According to the results of this study, the experience of external collaborations had a positive impact on the internal core competencies and non-financial management performance, while there was no direct impact on financial management performance. Moreover, the relationship between the experience of external collaborations and management performance is mediated by the internal core competencies. Additionally, it was found that the internal core competencies positively affected both non-financial and financial management performances, and non-financial management performance again had a significant impact on the financial management performance. Finally, the experience of external collaborations had a positive impact on both development, manufacturing, and marketing factors forming the internal core competencies. However, the impacts of individual factors were different in the management performance. Development and marketing factors were shown to have a significant impact on both non-financial and financial management performance, while the manufacturing factor had a significant impact only on financial management performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.