• Title/Summary/Keyword: trans-cinnamaldehyde

Search Result 21, Processing Time 0.027 seconds

Volatile Components of Essential Oils from Spices and It's Inhibitory Effects against Biofilm Formed by Food Poisoning Bacteria (향신료 정유의 휘발성 성분 및 식중독 세균에 의해 형성된 biofilm 억제 효과)

  • Kim, Hyeong-Eun;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.285-295
    • /
    • 2022
  • The ability of volatile components of essential oils (EO) from cinnamon, clove, and lemongrass to inhibit biofilms formed on polyethylene and stainless steel by six types of food poisoning bacteria was investigated. The main components of cinnamon EO were identified as cinnamaldehyde (38.30%), linalool (9.61%), β-caryophyllene (8.90%), and 1,3,4-eugenol (8.19%). 1,3,4-Eugenol (61.84%) was the dominant component of clove EO. The major component of lemongrass EO was citral. Citral is a natural mixture of two isomeric acyclic monoterpene aldehydes: geranial (trans-citral, 19.11%) and neral (cis-citral, 19.23%). Among these major compounds, cinnamaldehyde, linalool, eugenol, and citral exhibited comparatively strong antimicrobial activity in the disc diffusion assay. Treatments with 0.1% eugenol and citral were highly effective on biofilm inhibition on both tested surfaces. Cinnamaldehyde (0.1%) was effective against biofilm formation by Listeria monocytogenes ATCC 19112 and Staphylococcus aureus KCCM 11812. These results suggested the potential of cinnamaldehyde, eugenol, and citral treatments in inhibiting the formation of biofilms by food poisoning bacteria.

Synthesis and Biological Evaluation of New Allylamine Antimycotics (새로운 알릴아민 항진균제의 합성과 생물학적 평가)

  • Jeong, Byeong-Ho;Park, Eun-Ju;Mun, Hyeon-Ju;Yu, Jin-Cheol
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.507-512
    • /
    • 1996
  • Some allylamine compounds which are benzothiazole substituants in stead of naphthyl ring in naftifine, antifungal agents, were synthesized as potential antimycotics. The interme diate Schiff bases that were obtained by condensation of 2-aminobenzothiazole and trans-cinnamaldehyde, were reduced to imine compounds to give allylamines (5a-5d) after methylation. These compounds which were tested in vitro against five fungal cell lines containing Trichophyton mentagrophytes, showed no activity in 0.1~100${\mu}$g/ml range.

  • PDF

Phytochemical Constituents of Artemisia stolonofera

  • Kwon, Hak-Cheol;Choi, Sang-Un;Lee, Kang-Ro
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.312-315
    • /
    • 2001
  • Repeated column chromatographic separation of the $CH_{2}Cl_{2}$ extract of Artemisia stolonofera (Asteraceae) led to the isolation of a triterpene (I), a sesquiterpene (II), two aromatic compounds (III and IV) and a benzoquinone (V). Their structures were determined by spectroscopic means to be simiarenol (I), (1S,7S)-1 $\beta$-hydroxygermacra-4(15),5, 10(14)-triene (II), 3'-methoxy-4'-hydroxy-trans-cinnamaldehyde (III), vanillin(IV) and 2,6-dimethoxy-1,4-benzoquinone (V), respectively. Among these products, compound V showed significant cytotoxicity against five human tumor cell lines in vitro, A549 (non small cell lung adenocarcinoma), SK-OV-3 (ovarian), SK-MEL-2 (skin melanoma), XF498 (CNS) and HCT15 (colon) with ED_{50}$ values ranging from 1.33~4.22${\mu}g/ml$.

  • PDF

trans-Cinnamaldehyde-Induced Apoptosis in AGS Cells (AGS 세포주에서 트랜스 신남알데하이드의 세포 사멸 유도)

  • Lee, Sunyi;Jung, Joohee
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.100-104
    • /
    • 2021
  • trans-Cinnamaldehyde (TCA), as one of the active ingredients in cinnamon, has been reported to have antiviral, antibacterial and antifungal effects as well as anti-cancer effects in several cancer cell lines. However, reports of TCA in gastric cancer are rare, and its mechanism is unclear. In this study, we investigated the anti-proliferative effect of TCA and its mechanism in gastric cancer AGS cells. TCA dose-dependently inhibited the cell viability of AGS cells. Our results suggested that TCA induces apoptosis through changes in cell morphology. To elucidate its mechanism, we investigated the expression level of apoptosis-related proteins. TCA induced the expression of p53 and Bax proteins, and then increased the cleaved caspase 9 and cleaved PARP. These results indicated that TCA triggers apoptosis via p53 pathway in AGS cells. Our results suggested that TCA might be a new anticancer drug candidate for gastric cancer.

Analysis of Aroma Compounds of Cinnamon by Solid Phase Microextraction (Solid Phase Microextraction을 이용한 계피의 향기성분 분석)

  • 이창국;이재곤;장희진;곽재진
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2003
  • The volatile components of cinnamon bark were extracted by using different isolation methods, simultaneous distillation extraction (SDE) and solid phase microextraction (SPME). Then the volatile components were analyzed by gas chromatography(GC) and mass selective detector(MSD). 30 compounds were identified in cinnamon bark. In SPME technique, several factors influencing the equilibrium of the aroma compounds between sample and SPME fiber was taken into account, including the kind of SPME fiber, extraction temperature and extraction time. Four different SPME fibers were tested, namely polydimethylsiloxane (PDMS), poly acrylate(PA), divinyl- benzene-carboxen-polydimethylsiloxane (DVB/CAR/PDMS) and carbowax/divinylbenzene(CW/DVB). Among these SPME fiber, PDMS coating fiber showed the best results. The profile of volatile compounds of cinnamon bark at different extraction temperature and extraction time were investigated by 100$\mu\textrm{m}$ PDMS fiber.

Quantitative Analysis of t-Cinnamaldehyde of Cinnamomum cassia by $^1H-NMR$ Spectrometry ($^1H-NMR$을 이용한 계피의 t-cinnamaldehyde 정량분석)

  • Song, Myoung-Chong;Yoo, Jong-Su;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.267-272
    • /
    • 2005
  • trans-Cinnamaldehyde, a major component of Cinnamomum cassia, was quantitatively analyzed using the $^1H-NMR$ spectrometry. Applicability of this method was confirmed through observing the variation of chemical shift in the $^1H-NMR$ spectrum of t-cinnamaldehyde and the integration value according to various sample concentrations or running temperatures. When the $^1H-NMR$ spectrometry was run for t-cinnamaldehyde (7.1429 mg/ml) at 19, 25, 30, 40 and $50^{\circ}C$, the chemical shifts of the doublet methine signal due to an aldehyde group were observed at 9.7202, 9.7184, 9.7169, 9.7142 and 9.7124 ppm, respectively, to imply that the running temperature had no significant variation in the chemical shift of the signal. The integration values of the signal were $1.37\;(19^{\circ}C),\;1.37\;(25^{\circ}C),\;1.37\;(30^{\circ}C),\;1.37(40^{\circ}C)$ and $1.37(50^{\circ}C)$, respectively, to also indicate running temperature gave no effect on the integration value. When the sample solutions with various concentrations such as 0.4464, 0.8929, 1.7857, 3.5714, 7.1429 and 14.286 mg/ml were respectively measured for the $^1H-NMR$ at $25^{\circ}C$, the chemical shifts of the aldehyde group were observed at 9.7206, 9.7201, 9.7196, 9.7192, 9.7185 and 9.7174 ppm. Even though the signal was slightly shifted to the high field in proportion to the increase of sample concentration, the alteration was not significant enough to applicate this method. The calibration curve for integration values of the doublet methine signal due to the aldehyde group vs the sample concentration was linear and showed very high regression rate ($r^2=1.0000$). Meantime, the $^1H-NMR$ spectra (7.1429 mg/ml $CDCl_3,\;25^{\circ}C$) of t-cinnamaldehyde and t-2-methoxycinnamaldehyde, another constituent of Cinnamomum cassia, showed the chemical shifts of the aldehyde group as ${\delta}_H$ 9.7174 (9.7078, 9.7270) for the former compound and ${\delta}_H$ 9.6936 (9.6839, 9.7032) for the latter one. The difference of the chemical shift between two compounds was big enough to be distinguished using the NMR spectrometer with 0.45 Hz of resolution. The contents of cinnamaldehyde in Cinnamomum cassia, which were respectively extracted with n-hexane, $CHCl_3$, and EtOAc, were determiend as 94.2 \;mg/g (0.94%), 137.6 mg/g (1.38%) and 140.1 mg/g(1.40%) t-cinnamaldehyde in each extract, respectively, by using the above method.

The Effect of Trans-cinnamaldehyde on the Gene Expression of Lipopolysaccharide-stimulated BV-2 Cells Using Microarray Analysis (Trans-Cinnamaldehyde가 Lipopolysaccharide로 처리된 BV-2 cell에 미치는 항염증 기전 연구: Microarray 분석)

  • Sun, Young-Jae;Choi, Yeong-Gon;Jeong, Mi-Young;Hwang, Se-Hee;Lee, Je-Hyun;Cho, Jung-Hee;Lim, Sabina
    • The Journal of Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.13-27
    • /
    • 2009
  • Objectives: Trans-cinnamaldehyde (TCA) is the main component of Cinnamomi Ramulus and it has been reported that TCA inhibits inflammatory responses in various cell types. Inflammation-mediated neurological disorders induce the activation of macrophages such as microglia in brain, and these activated macrophages release various inflammation-related molecules, which can be neurotoxic if overproduced. In this study, we evaluated gene expression profiles using gene chip microarrays in lipopolysaccharide (LPS)-stimulated BV-2 cells to investigate the antiinflammatory effect of TCA on inflammatory responses in brain microglia. Methods: A negative control group was cultured in normal medium and a positive control group was stimulated with $1{\mu}g/ml$ in the absence of TCA. TCA group was pretreated with $10{\mu}g/ml$ before $1{\mu}g/ml$ LPS stimulation. The oligonucleotide microarray analysis was performed to obtain the expression profiles of 28,853 genes using gene chip mouse gene 1.0 ST array in this study. Results: In positive control group, 1522 probe sets were up-regulated in the condition of the cutoff value of 1.5-fold change and 341 genes with Unigene ID were retrieved. In TCA group, 590 probe sets were down-regulated from among 1522 probe sets and 33 genes with Unigene ID were retrieved, which included 6 inflammation-related genes. We found out that Id3 gene is associated with transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway and Klra8 gene is related to natural killer cell-mediated cytotoxicity pathway. Conclusions: The results mean that TCA inhibits inflammatory responses through down-regulating the expressions of inflammation-related genes in LPS-stimulated BV-2 cells.

  • PDF

Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides

  • Hong, Jeum Kyu;Yang, Hye Ji;Jung, Heesoo;Yoon, Dong June;Sang, Mee Kyung;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.269-277
    • /
    • 2015
  • Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for ecofriendly disease management of anthracnose during pepper fruit production.

Changes in Quality Characteristics of Pork Patties Containing Multilayered Fish Oil Emulsion during Refrigerated Storage

  • Jo, Yeon-Ji;Kwon, Yun-Joong;Min, Sang-Gi;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.71-79
    • /
    • 2015
  • This study was performed to determine the effect of multilayered fish oil (FO) emulsion without or with trans-cinnamal-dehyde on pork patties. Multilayered FO (-primary, -secondary, -tertiary) emulsions were prepared using a layer-by-layer deposition technique with Tween 20, chitosan, and low methoxyl pectin, and were added to pork patties at the same concentration. Pork patties were then stored for 20 d in a refrigerator ($5^{\circ}C$) to study changes in quality. The results showed that the pH value of all samples significantly decreased but cooking loss increased during storage (p<0.05). However, water-holding capacity and moisture content showed no remarkable difference between treatments and storage periods (p>0.05). All pork patties containing multilayered FO (treated samples) showed higher values for lightness and significantly lower values for yellowness compared to control pork patties (untreated sample). Lipid oxidation was higher in treated pork patties than in control pork patties during storage. In addition, lipid oxidation and total viable bacterial count in pork patties decreased as the number of coating layers increased. However, hardness, cohesiveness, and springiness of all samples showed no significant change during storage (p>0.05) as compared to fresh pork patties. Furthermore, these did not remarkable change with addition of trans-cinnamaldehyde in all pork patties. From our results, we suggest that FO emulsion did not affect the texture characteristics of fresh pork patties, indicating that it could be used to improve the quality of pork patties by contributing high-quality fat such as unsaturated fatty acids.

Synthesis and Biological Evaluation of Allylamine Antimycotics (항진균제 알릴아민류의 합성과 생물학적 평가)

  • Chung, Byung-Ho;Cho, Won-Jea;Cheon, Seung-Hoon;Park, Myun-Ji;Yoo, Jin-Cheol;Chun, Moon-Woo
    • YAKHAK HOEJI
    • /
    • v.41 no.2
    • /
    • pp.187-194
    • /
    • 1997
  • For the development of antifungal agents, modification of naftifine which exhibits significant antimycotic activity was performed by replacing the naphthalene ring of it to hete ro cyclic rings such as morpholine. benzothiazole, piperidine and pyridine derivatives. The synthesized compounds were tested in vitro antifungal activity against five different fungi with naftifine as a comparative antimycotic molecule. From the biological evaluation two compounds, (E)-N-(3-phenyl-2-propenyl)-N-(4-piperidinylmethyl)amine(3d) and (E)-N-(3-phenyl-2-propenyl)-N-(3-pyridylmethyl)amine(3f) showed relatively noticeable activity(MIC=50${\mu}g$/ml). On the other hand, the other compounds had no activity.

  • PDF