• Title/Summary/Keyword: trans fatty acid content

Search Result 85, Processing Time 0.028 seconds

Changes in the Physicochemical Characteristics and Trans Acid of Cottonseed Oil during Selective Hydrogenation (선택적 수소첨가 면실유의 이화학적 특성변화 및 트란스산 생성)

  • Kim, Hyean-Wee;Kim, Jong-Soo;Shim, Joong-Hwan;Park, Seong-Joon;Ahn, Tae-Hoe;Park, Ki-Moon;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.681-685
    • /
    • 1990
  • Changes in the physicochemical characteristics and trans acid of cottonseed oil under the condition of selective hydrogenation, temperature$210^{\circ}C,\;H_2\;pressure\;0.3\;kg/cm^2$ Ni catalyst amount 0.12% (in oil), agitation speed 280 rpm, were investigated. The saturated fatty acid such as palmitic acid and stearic acid did not show any difference, while linoleic acid($50.03%{\rightarrow}9.38%$) were transformed to oleic acid ($20.65%{\rightarrow}60.35%$) during hydrogenation. In linoleic acid isomers, cc form were reduced significantly, but ct, tc, tt form showed little change, respectively. In oleic acid isomer, t form increased markedly, whereas there was no significant difference in c form. Meanwhile, melting point(MP) and solid fat content (SFC) were linearly increased, but iodine value(IV) linearly decreased as hydrogenation proceeded. From these results, linear regression equations were obtained as follows. MP & IV : Y= 1.59-2.36X(r=-0.96, p<0.05), SFC($at\;20^{\circ}C$) & MP : Y=2.81+2.01X(r=0.96, p<0.05), SFC($at\;20^{\circ}C$) & IV : Y=9.40-5.16X(r=-0.99, p<0.01), SFC($at\;20^{\circ}C$) & 18 : 1t : Y=6.25+8.48X(r=0.97, p<0.05)

  • PDF

Analyses of Lipid and Volatile Components in Juniper Seed(Juniperus rigida Sieb. et Zucc.) (노간주나무(Juniperus rigida Sieb. et Zucc.) 열매의 지질 및 향기성분 분석)

  • 신원선;하재호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.795-800
    • /
    • 2003
  • Juniper seed oil extracted by steam distillation has been a useful material as a medicine, insect repellant, and flavorant for alcoholic beverages. As the result of juniper seed oil analysis, the acid value, saponification value, unsaponification value phosphorus contents, and refractive index were 91.04, 85.15, 15.52, 11.04 ppm, 1.47, respectively The content of neutral lipids, glycolipids and phospholipids were 85.4%, 12.2% and 2.4%, respectively. From the fatty acids analysis, the major fatty acids from the juniperseed harvested in August were lauric acid (31.9% ), palmitic acid (28.0% ), stearic acid (9.9%), and oleic acid (8.5%) . However, maturated seed oil harvested in October mainly consists of linoleic acid (47.6%), linolenic acid (17.6%), oleic acid (16.1%), and palmitic acid (11.9%). Upon these analyses, fatty acids composition of juniper seed oil depends on the seed maturation. According to volatile compounds analyses of essential oil extracted using steam distillation method and SPME, the major compounds were $\beta$-myrcene, $\alpha$-pinene, $\beta$-farnescene, $\beta$-cubebene, limonene, trans-caryo-phyllene, $\alpha$-terpinolene, camphene, sabinene, and $\beta$-pinene.

Chemical Composition, Cholesterol, Trans-Fatty Acids Contents, pH, Meat Color, Water Holding Capacity and Cooking Loss of Hanwoo Beef (Korean Native Cattle) Quality Grade (한우육의 육질등급에 따른 부위별 일반성분, pH, 육색, 보수력, 가열감량, 콜레스테롤 및 트랜스지방산 함량)

  • Lee, Yeon-Jung;Kim, Cheon-Jei;Park, Beom-Young;Seong, Pil-Nam;Kim, Jin-Hyoung;Kang, Geun-Ho;Kim, Dong-Hun;Cho, Soo-Hyun
    • Food Science of Animal Resources
    • /
    • v.30 no.6
    • /
    • pp.997-1006
    • /
    • 2010
  • The objective of this study was to investigate the proximate composition, pH, meat color, water holding capacity (WHC), cooking loss (CL), cholesterol content, and trans-fatty acid content of Hanwoo beef according to quality grade and cut. Five cuts [Cheggt (strip loin), Dngsim (loin), Moksim (chuck roll), Udoon (top round), Yanggi (brisket)] were obtained from 15 Hanwoo animals [3 bulls and 12 steers, 24-30 months old]. Three animals were selected from each quality grade of $1^{++}$, $1^+$, 1, 2, and 3. The protein and moisture contents (%) were significantly higher, and the fat contents (%) were significantly lower in 3 quality grade compared to the other grades (p<0.05). pH values of chuck roll and strip loin were significantly lower in $1^+$ quality grade (5.61 and 5.51) than those in 3 quality grade (5.88 and 5.92) (p<0.05). CIE L* values were significantly higher in the $1^{++}$ quality grade group (38.52-42.69%) than in 3 quality grade (33.02-36.08) (p<0.05). In the $1^{++}$ and 2 quality grade groups, CIE $L^*$ values of loin were significantly higher than those of other cuts (p<0.05). CIE $a^*$ values of loin (28.11) in 1 quality grade were the highest, whereas those of strip loin (15.36) in 3 quality grade were the lowest (p<0.05). WHC was not significantly different among the five cuts or quality grades. In CL, loin and strip loin were significantly lower in $1^{++}$ quality grade than in 3 quality grade (p<0.05), and they were also significantly lower (22.21-24.81%) than the other cuts in the same quality grade (p<0.05). The loin in $1^{++}$ (41.26 mg/100 g), $1^+$ (43.23), and 1 quality grades (48.63) had higher cholesterol contents (%) than in 2 (36.02) and 3 quality grades (29.84) (p<0.05). Cholesterol contents of the five cuts in $1^{++}$ quality grade (39.44-43.31%) were significantly higher than those in 3 quality grade (28.09-32.39%). The trans-fatty acid contents of the five cuts were 1.08-2.72%. The loin, strip loin, brisket, and top round in 3 quality grade had significantly higher trans-fatty acid contents than those of the other grades (p<0.05).

Degumming Effect on Vegetable oil of Degumming agent (각종 탈검제에 의한 식물성 기름의 탈검효과)

  • 김덕숙;안명수
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 1988
  • The almost similar degumming effect was obtained by using oxalic acid instead of phosphoric acid, which also improves waste-water treatment. At this point, solution of Phosphoric, Acetic, Citric, Oxalic, and Nitric acid were used for degumming of rapeseed and soybean oil. Compared with Phosphoric(PA) and Oxalic acid(OA) were showed a simillar degumming effect in these vegetable oils. In rapeseed oil of 85% PA treating group and 5,10% OA fretting group, residual soap and phosphorus content in neutralized oil, color in bleached oil, and peroxide value and fatty acid content in deodrized oil were showed to simillar result. Soybean oil as well as rapeseed oil were showed to similar result. As a result, we could comfirmed substitutive possibility, which change PA into OA as a degumming agent. In the other hand, waste waters were obtained from 55% PA treating group and 10% OA treating group. Analytical result for this waste waters has showed a wide difference, especially in the BOD and COD. The amount of treating agents and time required in the precipitation seperation and chemical treatment each 3 and 1.7 times, which is PA treating group than OA treating group. We have investigated both the simillar degumming effect by OA solution and an alternative the pollution program means of a chemical treatment process is not possible.

  • PDF

Comparison of Functional Constituents and Biological Activity of the Seed Extracts from Two Mulberry Fruits

  • Kim, Eun-Ok;Yu, Myeong-Hwa;Lee, Yu-Jin;Leem, Hyun-Hee;Kim, Shin-Ae;Kang, Dae-Hun;Choi, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.98-104
    • /
    • 2010
  • The seeds from two mulberry fruits [Morus alba (MA) and Cudrania tricuspidata (CT)] were examined for their oil content, and fatty acid, phytosterol and tocopherol compositions and contents. Moreover, polyphenolic compounds and biological activity of the two defatted seed residue extracts were also evaluated. Oil contents of MA and CT seeds were 29.36% and 16.69%, respectively, while MeOH extracts of the defatted MA and CT seed residues were 5.10% and 6.22%, respectively. The two seed oils were composed of 81.4 and 74.37% linoleic, 5.75 and 11.39% oleic, 8.40 and 10.18% palmitic acid, and 3.52 and 3.0% stearic acids, and two other minor fatty acids, such as linolenic and arachidic acids. MA seed had higher contents of phytosterols (507.59 mg/100 g of oil), tocopherols (99.64 mg/100 g of oil), and total flavonoid (106.50 mg/100 g of seed) than CT seed, whereas CT seed had higher levels of total polyphenol than MA seed. The MeOH extract of MA seed residue showed higher antioxidant, anti-diabetic, and anti-melanogenic activity than that of CT seed residue. trans-Resveratrol (9.62 mg/100 g), quercetin (54.83 mg/100 g), and 4-prenylmoracin (48.70 mg/100 g), were found to be the main polyphenolic components in the MeOH extract of MA seed residue. These results indicate that MA seeds are good sources of essential dietary phytochemicals with antioxidant, anti-diabetic and anti-melanogenic activity.

Studies on the Lipids of 'Bugbangjohgae' Spisula sachalinensis (북방 조개의 유지에 관한 연구)

  • JOH Yong Goe;HATA Mitsuo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 1976
  • The present investigation was performed to find the lipid composition of the total lipids, the fatty acid components of the neutral lipids and the phospholipids, and the composition of sterols, from Spisula sachalinensis. The results obtained are as follows ; 1) The main components of the total lipids are phospholipids$(43.1\%)$, triglyceride$(36.2\%) $, and sterol $(10.3\%)$. 2) The phospholipids are mainly composed of phosphatidyl choline, phosphatidyl ethanols, mine, phosphatidal ethanolamine and phosphatidyl serine. 3) The main fatty acids of the neutral lipids, the ethanolamine phospholipids and choline phospholpids, are C20:5, C16:1, C16:0, C20:5, C18:0, C22:6 and C16:0, C20:5, C22:6, respectively. Oleic acid content of all fractions is very small compared with one of gastropoda lipids and fish oil. 4) Most of plasmalogen are present in the ethanolamine phospholipids and only trace of plasmalogen in the choline phospholipids. 5) Sterols to be found are 22-trans-norcholesta-5, 22-diene-$3\beta$-ol, 22-dehydrocholesterol, cholesterol, brassicasterol, 24-methylenecho-lesterol and $\beta-sitosterol$.

  • PDF

Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production (황산을 이용한 열대작물 오일의 전처리 반응 최적화 및 바이오디젤 생산)

  • Kim, Deog-Keun;Choi, Jong-Doo;Park, Ji-Yeon;Lee, Jin-Suk;Park, Seung-Bin;Park, Soon-Chul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.762-767
    • /
    • 2009
  • In this study, the feasibility of using vegetable oil extracted from tropical crop seed as a biodiesel feedstock was investigated by producing biodiesel and analysing the quality parameters as a transport fuel. In order to produce biodiesel efficiently, two step reaction process(pre-treatment and transesterificaion) was required because the tropical crop oil have a high content of free fatty acids. To determine the suitable acid catalyst for the pre-esterification, three kinds of acid catalysts were tested and sulfuric acid was identified as the best catalyst. After constructing the experimental matrix based on RSM and analysing the statistical data, the optimal pre-treatment conditions were determined to be 26.7% of methanol and 0.982% of sulfuric acid. Trans-esterification experiments of the pre-esterified oil based on RSM were carried out, then discovered 1.24% of KOH catalyst and 22.76% of methanol as the optimal trans-esterification conditions. However, the quantity of KOH was higher than the previously established KOH concentration of our team. So, we carried out supplemental experiment to determine the quantity of catalyst and methanol. As a result, the optimal transesterification conditions were determined to be 0.8% of KOH and 16.13% of methanol. After trans-esterification of tropical crop oil, the produced biodiesel could meet the major quality standard specifications; 100.8% of FAME, 0.45 mgKOH/g of acid value, 0.00% of water, 0.04% of total glycerol, $4.041mm^2/s$ of kinematic viscosity(at $40^{\circ}C$).

An Analysis of Lipid Contents Produced from Three Different Microalgae Depending on the Lighting Period and Their Saccharification Conversion (빛의 조사 기간에 따른 세 가지 미세조류의 지질 함량 변화와 균체의 당화 전환율 비교)

  • Lim, Su-Bin;Jeong, Ji-Won;Yeon, Jae-Sung;Lee, Na-Kyung;Won, Jong-In
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.468-471
    • /
    • 2015
  • Microalgae have the advantages of being able to utilize the solar energy and culturing at a low cost. In particular, microalgae have a great potential in the production of biodiesel due to the high lipid content. Lipids produced from microalgae are converted to fatty acid methyl ester (FAME) by trans-esterification reaction and FAME is called a biodiesel in general. In addition, microalgae can also be utilized as a substrate for ethanol fermentation after saccharification reaction. In this study, three types of microalgae (Nanochloris, Dunaliella tertiolecta, Tetraselmis) were cultured and their lipid contents were compared. In addition, the effects of lighting period on the growth rate and lipid content were studied. Finally, the amounts of glucose produced from each saccharified microalgae were investigated. As a result, we demonstrated that D. tertiolecta has 43.6% higher lipid content and 22% higher glucose conversion than two others.

Characterization of Scaled-up Low-Trans Shortening from Rice Bran Oil and High Oleic Sunflower Seed Oil with Batch Type Reactor (회분식반응기를 이용한 미강유, 팜스테아린과 고올레인산 해바라기씨유 유래 대량 제조된 저트랜스 쇼트닝의 특성 연구)

  • Kim, Ji-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.338-345
    • /
    • 2009
  • Scaled-up low-trans shortening (LTS) was produced by lipase-catalyzed interesterification. Blend of rice bran oil (RBO), palm stearin (PS) and high oleic sunflower seed oil (HO) with 1:2:0.9 (w/w/w) ratio was interesterified using immobilized lipase from Thermomyces lanuginosus (TLIM) in the batch type reactor at $65^{\circ}C$ for 24 hr, and physicochemical melting properties of LTS were compared with commercial shortening. Solid fat content (SFC) of commercial shortening (used as control) and LTS was similar at 9.56 and 8.77%, respectively, at $35^{\circ}C$. Major fatty acids in LTS were C16:1 (33.7 wt%), C18:1 (45.7 wt%) and C18:2 (13.4 wt%). Trans fatty acid content in the commercial shortening (4.8 wt%) was higher than that of LTS (0.5 wt%). After reverse-phase HPLC analysis, major triacylglycerol (TAG) species in LTS were POO, POP and PLO. Total tocopherol, ${\gamma}$-oryzanol and phytosterol contents in the LTS were 12.37, 0.43 and 251.38 mg/100 g, respectively. Hardness of LTS was similar to that of commercial shortening. Also, x-ray diffraction analysis showed coexistence of ${\beta}'$ and ${\beta}$ form in the LTS.

Biodiesel production using lipase producing bacteria isolated from button mushroom bed (양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산)

  • Kim, Heon-Hee;Kim, Chan-Kyum;Han, Chang-Hoon;Lee, Chan-Jung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • A lipase producing bacterium was isolated from button mushroom bed, which showing high clear zone on agar media containing Tributyrin as the substrate. The strain was identified as Burkholderia cepacia by analysis of 16S rDNA gene sequence. Crude lipase (CL) was partially purified from 70% ammonium sulfate precipitation using the culture filtrate of B. cepacia. Immobilized lipases were prepared by cross-linking method with CL from B. cepacia and Novozyme lipase (NL) onto silanized Silica-gel as support. Residual activitiy of the immobilized CL (ICL) and immobilized NL (INL) was maintained upto 61% and 72%, respectively. Biodiesel (Fatty acid methyl ester, FAME) was recovered by transesterification and methanolysis of Canola oil using NaOH, CL and ICL as the catalysts to compare the composition of fatty acids and the yield of FAME. Total FAME content was NaOH $781mg\;L^{-1}$, CL $681mg\;L^{-1}$ and ICL $596mg\;L^{-1}$, in which the highest levels of FAME was observed to 50% oleic acid (C18:1) and 22% stearic acid (C18:0). In addition, the unsaturated FAME (C18:1, C18:2) decreased, while saturated FAME (C16:0, C18:0) increased according to increasing the reaction times with both CL and ICL, supporting CL possess both transesterification and interesterification activity. When reusability of ICL and INL was estimated by using the continuous reaction of 4 cycles, the activity of ICL and INL was respectively maintained 66% and 79% until the fourth reaction.