• 제목/요약/키워드: trajectory design

검색결과 736건 처리시간 0.025초

가변 저추력을 이용한 달탐사 임무궤도 설계 (Mission Trajectory Design for Lunar Explorer using Variable Low Thrust)

  • 이승현;박종오;심은섭;송영주;박상영
    • 항공우주기술
    • /
    • 제7권1호
    • /
    • pp.91-98
    • /
    • 2008
  • 제 2의 우주경쟁 시대를 맞이하여 세계 각국은 달을 선점하기 위한 치열한 경쟁을 벌이고 있다. 달에 영구기지를 2020년까지 건설하겠다는 미국을 비롯하여 유럽, 일본, 중국은 달탐사선을 성공적으로 발사하였으며 인도는 발사를 준비 중이다. 이와 같은 국제적인 분위기 속에 우리나라도 2020년까지 달에 탐사선을 보낼 계획을 발표하였다. 본 연구에서는 가변저추력을 이용한 달탐사 위성 설계에 기본 자료로 사용될 수 있는 달탐사 임무궤도를 설계하였으며, 이를 바탕으로 SMART-1과 비슷한 제원을 갖는 가상의 달탐사 임무를 설정하여 비행궤적을 산출하였다.

  • PDF

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum;Park, Sang-Young;Cho, Sungki;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권2호
    • /
    • pp.105-117
    • /
    • 2021
  • In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.

Rotorcraft Waypoint Guidance Design Using SDRE Controller

  • Yang, Chang-Deok;Kim, Chang-Joo;Yang, Soo-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.12-22
    • /
    • 2009
  • This paper deals with the State-Dependent Riccati Equation (SDRE) Technique for the design of rotorcraft waypoint guidance. To generate the flight trajectory through multiple waypoints, we use the trigonometric spline. The controller design and its validation is based upon a level 2 simulation rotorcraft model and the designed SDRE controller is applied to the trajectory tracking problems. To verify the designed guidance law, the simulation environment of high fidelity rotorcraft model is developed using three independent PCs. This paper focuses on the validation of rotorcraft waypoint guidance law which is designed by using SDRE Controller.

제한추력을 이용한 달 천이(TLI) 기동의 설계 및 해석 (Trans Lunar Injection (TLI) Maneuver Design and Analysis using Finite Thrust)

  • 송영주;박상영;김해동;이주희;심은섭
    • 한국항공우주학회지
    • /
    • 제38권10호
    • /
    • pp.998-1011
    • /
    • 2010
  • 본 연구에서는 미래 한국의 달탐사에 대비, 제한추력을 이용한 최적의 지구-달 천이궤적 설계를 수행하였다. 보다 실제적인 임무 시나리오 설계를 위해 달 천이 (Trans Lunar Injection, TLI) 기동에 사용되는 발사체 상단 킥모터의 추력 성능을 제한하였다. 이를 바탕으로 지구 출발부터 달 근접에 이르는 지구-달 천이비행궤적이 설계되었으며, 제한추력을 이용하여 설계된 비행 궤적의 최적화 결과와 순간추력을 이용하여 최적화된 결과가 비교 분석되었다. 만약 순간추력을 이용해 도출된 예비 임무 설계의 결과가 제한추력을 가정한 임무 설계를 위해 응용될 경우, 가정된 제한추력의 크기에 따라 다양한 범위의 기동량의 차이가 발생 할 수 있어 이에 따른 충분한 고려가 이루어져야 함을 확인하였다. 본 연구에서 제시된 제한추력을 이용한 달탐사 임무궤적 설계/해석 결과는 미래 한국의 달탐사를 대비하는데 있어 다양한 사전 지식을 제공할 것이며 장차 상세한 임무설계를 위한 알고리즘의 기반으로 사용될 수 있다.

유전자 알고리즘을 이용한 이족 보행 로봇의 최적 설계 및 최적 보행 궤적 생성 (Optimal Gait Trajectory Generation and Optimal Design for a Biped Robot Using Genetic Algorithm)

  • 권오흥;강민성;박종현;최무성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.833-839
    • /
    • 2004
  • This paper proposes a method that minimizes the consumed energy by searching the optimal locations of the mass centers of links composing of a biped robot using Real-Coded Genetic Algorithm. Generally, in order to utilize optimization algorithms, the system model and design variables must be defined. Firstly, the proposed model is a 6-DOF biped robot composed of seven links, since many of the essential characteristics of the human walking motion can be captured with a seven-link planar biped walking in the saggital plane. Next, Fourth order polynomials are used for basis functions to approximate the walking gait. The coefficients of the fourth order polynomials are defined as design variables. In order to use the method generating the optimal gait trajectory by searching the locations of mass centers of links, three variables are added to the total number of design variables. Real-Coded GA is used for optimization algorithm by reason of many advantages. Simulations and the comparison of three methods to generate gait trajectories including the GCIPM were performed. They show that the proposed method can decrease the consumed energy remarkably and be applied during the design phase of a robot actually.

요청한 작업 경로에 따른 매니퓰레이터의 기구학적 변수 선정을 위한 군집 지능 기반 최적 설계 (Swarm Intelligence-based Optimal Design for Selecting the Kinematic Parameters of a Manipulator According to the Desired Task Space Trajectory)

  • 이준우
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.504-510
    • /
    • 2016
  • Robots are widely utilized in many fields, and various demands need customized robots. This study proposes an optimal design method based on swarm intelligence for selecting the kinematic parameter of a manipulator according to the task space trajectory desired by the user. The optimal design method is dealt with herein as an optimization problem. This study is based on swarm intelligence-based optimization algorithms (i.e., ant colony optimization (ACO) and particle swarm optimization algorithms) to determine the optimal kinematic parameters of the manipulator. The former is used to select the optimal kinematic parameter values, whereas the latter is utilized to solve the inverse kinematic problem when the ACO determines the parameter values. This study solves a design problem with the PUMA 560 when the desired task space trajectory is given and discusses its results in the simulation part to verify the performance of the proposed design.

PVAJT 모션플래너를 이용한 Cubic Spline 보간기의 설계 (Design of Cubic Spline Interpolator using a PVAJT Motion Planner)

  • 신동원
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.33-38
    • /
    • 2011
  • A cubic spline trajectory planner with arc-length parameter is formulated with estimation by summing up to the 3rd order in Taylor's expansion. The PVAJT motion planning is presented to reduce trajectory calculation time at every cycle time of servo control loop so that it is able to generate cubic spline trajectory in real time. This method can be used to more complex spline trajectory. Several case studies are executed with different values of cycle time and sampling time, and showed the advantages of the PVAJT motion planner. A DSP-based motion controller is designed to implement the PVAJT motion planning.

Reference Trajectory Analysis and Trajectory Control by Bank Angle for Re-Entry Vehicle

  • Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.745-756
    • /
    • 2002
  • The re-entry problem consists of guidance design and trajectory control. This paper summarizes the detailed relationships between the velocity, drag acceleration and altitude in determining reference trajectories. The computational issues are also addressed, and the performance of the proposed simple nonlinear control of a bank angle for the longitudinal/ lateral trajectory is demonstrated. In particular, the fixed bank angle methods that can reduce the drag acceleration errors at low-speeds are proposed. The importance of bank reversals with respect to the azimuth errors Is also elucidated.

화방 정찰 체계에서의 다수의 이동 로봇을 위한 시간 효율적인 경로 계획 알고리즘에 대한 연구 (Time-Efficient Trajectory Planning Algorithms for Multiple Mobile Robots in Nuclear/Chemical Reconnaissance System)

  • 김재성;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.1047-1055
    • /
    • 2009
  • Since nuclear and chemical materials could damage people and disturb battlefield missions in a wide region, nuclear/chemical reconnaissance systems utilizing multiple mobile robots are highly desirable for rapid and safe reconnaissance. In this paper, we design a nuclear/chemical reconnaissance system including mobile robots. Also we propose time-efficient trajectory planning algorithms using grid coverage and contour finding methods for reconnaissance operation. For grid coverage, we performed in analysis on time consumption for various trajectory patterns generated by straight lines and arcs. We proposed BCF (Bounded Contour Finding) and BCFEP (Bounded Contour Finding with Ellipse Prediction) algorithms for contour finding. With these grid coverage and contour finding algorithms, we suggest trajectory planning algorithms for single, two or four mobile robots. Various simulations reveal that the proposed algorithms improve time-efficiency in nuclear/chemical reconnaissance missions in the given area. Also we conduct basic experiments using a commercial mobile robot and verify the time efficiency of the proposed contour finding algorithms.

Detecting Abnormal Human Movements Based on Variational Autoencoder

  • Doi Thi Lan;Seokhoon Yoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.94-102
    • /
    • 2023
  • Anomaly detection in human movements can improve safety in indoor workplaces. In this paper, we design a framework for detecting anomalous trajectories of humans in indoor spaces based on a variational autoencoder (VAE) with Bi-LSTM layers. First, the VAE is trained to capture the latent representation of normal trajectories. Then the abnormality of a new trajectory is checked using the trained VAE. In this step, the anomaly score of the trajectory is determined using the trajectory reconstruction error through the VAE. If the anomaly score exceeds a threshold, the trajectory is detected as an anomaly. To select the anomaly threshold, a new metric called D-score is proposed, which measures the difference between recall and precision. The anomaly threshold is selected according to the minimum value of the D-score on the validation set. The MIT Badge dataset, which is a real trajectory dataset of workers in indoor space, is used to evaluate the proposed framework. The experiment results show that our framework effectively identifies abnormal trajectories with 81.22% in terms of the F1-score.