A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.
Ji, Seungmin;Ham, Seok Woo;Choi, Jin Kyung;Cheon, Seong S.
Composites Research
/
v.34
no.6
/
pp.394-399
/
2021
Piecewise Integrated Composite (PIC) is a new concept to design composite structures of multiple stacking angles both for in-plane direction and through the thickness direction in order to improve stiffness and strength. In the present study, PIC beam was suggested based on 3D training data instead of 2D data, which did offer a limited behavior of beam characteristics, with enhancing the stiffness accompanied by reduced tip deformation. Generally training data were observed from the designated reference finite elements, and preliminary FE analysis was conducted with respect to regularly distributed reference elements. Also triaxiality values for each element were obtained in order to categorize the loading state, i.e. tensile, compressive or shear. The main FE analysis was conducted to predict the mechanical characteristics of the PIC beam.
Kim, Ji Seop;Yoon, Young Geul;Han, Dong-Gyun;La, Hyoung Sul;Choi, Jee Woong
The Journal of the Acoustical Society of Korea
/
v.41
no.2
/
pp.235-241
/
2022
Several studies using Convolutional Neural Network (CNN) have been conducted to detect and classify the sounds of marine mammals in underwater acoustic data collected through passive acoustic monitoring. In this study, the possibility of automatic classification of bearded seal sounds was confirmed using a CNN model based on the underwater acoustic spectrogram images collected from August 2017 to August 2018 in East Siberian Sea. When only the clear seal sound was used as training dataset, overfitting due to memorization was occurred. By evaluating the entire training data by replacing some training data with data containing noise, it was confirmed that overfitting was prevented as the model was generalized more than before with accuracy (0.9743), precision (0.9783), recall (0.9520). As a result, the performance of the classification model for bearded seals signal has improved when the noise was included in the training data.
This study analyzed various machine learning models that predict employment outcomes after vocational training using pre-assessment data of disabled vocational trainees. The study selected and utilized the most appropriate machine learning models based on a data set containing various personal characteristics, including trainees' gender, age, and type of disability. Through this analysis, the goal is to improve the employment rate and job satisfaction of disabled trainees using only pre-assessment data. As a result, it presents a universal approach that can be applied not only to people with disabilities, but also to vocational trainees from a variety of backgrounds. This is expected to make an important contribution to the development and implementation of tailored vocational training programs, ultimately helping to achieve better employment outcomes and job satisfaction.
Journal of the Korea Society of Computer and Information
/
v.27
no.9
/
pp.191-203
/
2022
In this paper, we developed a system that intelligently identifies skin image data from big data collected from social media Instagram and extracts standardized skin sample data for skin condition diagnosis and management. The system proposed in this paper consists of big data collection and analysis stage, skin image analysis stage, training data preparation stage, artificial neural network training stage, and skin image identification stage. In the big data collection and analysis stage, big data is collected from Instagram and image information for skin condition diagnosis and management is stored as an analysis result. In the skin image analysis stage, the evaluation and analysis results of the skin image are obtained using a traditional image processing technique. In the training data preparation stage, the training data were prepared by extracting the skin sample data from the skin image analysis result. And in the artificial neural network training stage, an artificial neural network AnnSampleSkin that intelligently predicts the skin image type using this training data was built up, and the model was completed through training. In the skin image identification step, skin samples are extracted from images collected from social media, and the image type prediction results of the trained artificial neural network AnnSampleSkin are integrated to intelligently identify the final skin image type. The skin image identification method proposed in this paper shows explain high skin image identification accuracy of about 92% or more, and can provide standardized skin sample image big data. The extracted skin sample set is expected to be used as standardized skin image data that is very efficient and useful for diagnosing and managing skin conditions.
Purpose - The purpose of this study is to explore the introduction and activation of smart training for the effective training of vocational ability development of companies in the 4th industrial revolution era, we analyze the present status of smart training introduction and related difficulties and propose concrete activation plan. Research design, data, and methodology - Through the online survey, we tried to confirm the recognition of corporate about smart training. Questionnaires include what are the benefits, expectations, and difficulties of smart training, etc. The survey was conducted from August 21, 2017 to September 4, 2017. A total of 69 companies participated in the questionnaire. The questionnaire results were analyzed through frequency analysis and contents analysis. Based on the results of the questionnaire, we found out the cause of inhibition of smart training activation and suggested activation strategies. Results - The main reason for the provision of smart training is the expectation of the training performance and the recognition that it is possible to provide training in a flexible manner. The effectiveness of smart training operation was evaluated as a high level of contribution to the development of creative training course and the capacity of training institute. As a result of checking factors that hinders the activation of smart training, the most important reason is that the time and cost burden of the training institutes is excessive. The lack of expertise in the design of smart training courses and the burden of employers and trainees. Conclusions - In order to activate smart training, it is necessary to find solutions to the obstacles at the internal or external level of training institutions. The internal barriers to the training organization are lack of internal competence for preparation and course management. In this regard, we need to consider providing consulting, best practices or guidance in the process of designing and operating smart training. On the other hand, as an external obstacle factor, it is necessary to provide incentives to participate in smart training. In addition, further research is needed on strategies that can lead to participation in smart training from the viewpoint of employers and learners.
Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
/
v.14
no.2
/
pp.88-93
/
2003
Whether respiratory muscle training is of benefit to the singing students is controversial. The purpose of the study is to investigate pulmonary function and the maximal inspiratory(MIP) and expiratory pressure(MET), and maximum phonation time in five female singing students before and after the specially programmed respiratory muscle training during 2 months. All singing students had average 4.8 years of formal classical voice training. Respiratory muscle training machine (Ultrabreath) was used to train respiratory muscle. Pulmonary function test data on simple pulmonary function, flow volume curve, static lung volumes are obtained from Vmax 6200. The MIP and MEP were measured using Spirovis, and the MPT were measured using hand-held stopwatch. Any pulmonary function test variables are not changed after respiratory muscle training. However, MIP and MEP were significantly increased between before and after respiratory muscle training. MPT increased significantly after training, compared to the pre-trained. MIP, MEP, and MPT after training in female singing students were 26%, 25% and 33% higher than those before training. The result indicated that the specially programmed respiratory muscle training is beneficial to improve respiratory muscle strength and vocal function without an increment in pulmonary function.
Journal of Korean Academy of Fundamentals of Nursing
/
v.6
no.2
/
pp.169-184
/
1999
The purpose of this study was to identify the effects of breathing biofeedback training on the stress of nursing students in clinical practice. The research design was a nonequivalent control group pretest-posttest design. The subjects of this study were 39 nursing students from the College of Nursing of K University. The study was conducted from July 20 to September 3, 1998. The subjects were assigned to one of two groups : the experimental group (19 students), and the control group (20 students). The breathing biofeedback training was performed 12 times with the experimental group. The level of psychological stress was measured using the State Anxiety Inventory, Profile of Mood State, and Visual Analogue Stress Scale. The level of physiological stress was measured using pulse rate and blood pressure. The data were analyzed using descriptive statistics, $x^2-test$, t-test, and repeated measures of ANOVA. The results of study are as follows : 1) State anxiety scores were not significantly different between the experimental group and the control group after the biofeedback training. 2) Profile of mood state scores were not significantly different between the experimental group and the control group after the biofeedback training. 3) Visual Analogue Stress Scale scores were significantly different between the experimental group and the control group after the biofeedback training(F=11.68, p=0.002). 4) Pulse rates were not significantly different between the experimental group and the control group after the biofeedback training. 5) Systolic blood pressures were significantly different between the experimental group and the control group after the biofeedback training(F=5.44, p=0.025). 6) Diastolic blood pressures were not significantly different between the experimental group and the control group after the biofeedback training. On the basis of the above findings, the following recommendations for further study are made ; 1) Identification of the effects of breathing biofeedback training at times of high stress during clinical practice. 2) Identification fo the effects of stress reduction according to the frequency of the breathing biofeedback training.
Journal of The Korean Society of Integrative Medicine
/
v.3
no.4
/
pp.37-42
/
2015
Purpose: This study was conducted to test the impact of The Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity. Dynavision were used to measure data from the participating 24 students(K college). Method : The participants were the 24 students of 'K' College in Busan in there twenties. They were divided into the The Dynamic Visual-Motor integration training group and the control group. To know if the Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity, the Dynamic Visual-Motor integration training was implemented triweekly for 4 weeks. In Dynamic Visual-Motor integration training the ball should be grasped with one hand and threw by an arm. Only the balls threw beyond the objective point were counted. The visual perception reaction velocity and the number of response were measured before and after experiment by Dynavision. Result : Firstly, the visual perception reaction velocity was increased in Dynamic Visual-Motor integration training group compared with control group. Secondly, the number of response was also increased in Dynamic Visual-Motor integration training group compared with control group. Conclusion : As a result of The Dynamic Visual-Motor integration training has an effect on the visual perception reaction velocity and the number of response. The Dynamic Visual-Motor integration training seems to be effective for cerebral apoplexy patient who has visual perceptional disability or cerebral palsy child in training for visual perceptional development or daily living activities development. Study participated by more detailed and practical patients in hospital is needed.
This study verified the effect of the experience of job-training on youth employees' wage by analyzing panal data. The study results showed that the objective of job-training(enhancing job performance, ${\beta}=.336$), satisfaction of job-training(${\beta}=.-.256$) and the type of job-training(cyber lecture, ${\beta}=.334$) significantly affected youth employees' wage. Also, age, education, marital status, hour of job-training, objective of job-training and satisfaction of job-training significantly affected the differences between groups. This study provided practical implication to prepare effective job-training policy by confirming the effect of the experience of job-training on youth employees' wage and verifying the effectiveness of job-training.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.