• Title/Summary/Keyword: traffic-induced vibration

Search Result 57, Processing Time 0.036 seconds

Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks' VIV stability

  • Li, Ke;Qian, Guowei;Ge, Yaojun;Zhao, Lin;Di, Jin
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • Vortex-Induced-Vibration (VIV) is one kind of the wind-induced vibrations, which may occur in the construction and operation period of bridges. This phenomenon can bring negative effects to the traffic safety or can cause bridge fatigue damage and should be eliminated or controlled within safe amplitudes.In the current VIV studies, one available mitigation countermeasure, the horizontal flow-isolating plate, shows satisfactory performance particularly in PI shaped bridge deck type. Details of the wind tunnel test are firstly presented to give an overall description of this appendage and its control effect. Then, the computational-fluid-dynamics(CFD) method is introduced to investigate the control mechanism, using two-dimensional Large-Eddy-Simulation to reproduce the VIV process. The Reynolds number of the cases involved in this paper ranges from $1{\times}10^5$ to $3{\times}10^5$, using the width of bridge deck as reference length. A field-filter technique and detailed analysis on wall pressure are used to give an intuitive demonstration of the changes brought by the horizontal flow-isolating plate. Results show that this aerodynamic appendage is equally effective in suppressing vertical and torsional VIV, indicating inspiring application prospect in similar PI shaped bridge decks.

Human-Induced Vibrations in Buildings

  • Wesolowsky, Michael J.;Irwin, Peter A.;Galsworthy, Jon K.;Bell, Andrew K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Occupant footfalls are often the most critical source of floor vibration on upper floors of buildings. Floor motions can degrade the performance of imaging equipment, disrupt sensitive research equipment, and cause discomfort for the occupants. It is essential that low-vibration environments be provided for functionality of sensitive spaces on floors above grade. This requires a sufficiently stiff and massive floor structure that effectively resists the forces exerted from user traffic. Over the past 25 years, generic vibration limits have been developed, which provide frequency dependent sensitivities for wide classes of equipment, and are used extensively in lab design for healthcare and research facilities. The same basis for these curves can be used to quantify acceptable limits of vibration for human comfort, depending on the intended occupancy of the space. When available, manufacturer's vibration criteria for sensitive equipment are expressed in units of acceleration, velocity or displacement and can be specified as zero-to-peak, peak-to-peak, or root-mean-square (rms) with varying frequency ranges and resolutions. Several approaches to prediction of floor vibrations are currently applied in practice. Each method is traceable to fundamental structural dynamics, differing only in the level of complexity assumed for the system response, and the required information for use as model inputs. Three commonly used models are described, as well as key features they possess that make them attractive to use for various applications. A case study is presented of a tall building which has fitness areas on two of the upper floors. The analysis predicted that the motions experienced would be within the given criteria, but showed that if the floor had been more flexible, the potential exists for a locked-in resonance response which could have been felt over large portions of the building.

Experimental Study on Dynamic Characteristics of Cable-Stayed Bridge (사장교의 동특성분석에 관한 실험적 연구)

  • 황학주;김상효;전귀현;박기태;신주환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.209-216
    • /
    • 1994
  • Recently, cable-supported long-span bridge are widely constructed due to improved quality of cable and development of design and construction techniques. In this study, an existing cable-stayed bridge, Dolsan Bridge, has been evaluated based on the cable forces measured using vibration method. And the finite element model using in this study for the dynamic analysis has been found to be quite comparable with dynamic mode shapes and natural frequencies estimated from experimental data induced by ambient traffic excitations.

  • PDF

Noise and Vibration Solutions Considering Stability Effects for High-Speed Rail ChonAn Station in Korea (한국고속철도 천안역사에 대한 소음 및 진동영향 연구)

  • Kweon Young-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.848-853
    • /
    • 2005
  • The objective of this paper is to address to the providing an adequate noise and vibration solution, required for High Speed Rail while maintaining the stability criteria of the ChonAn station structure, the first constructed in Korean High Speed Railway. The significant acoustic pressure level will be induced by the high speed trains passing-by. Therefore, the high level study of this case is necessary. The acoustic pressure level of 85 dB(A) inside the ChonAn station is expected, and the spaces below concrete slab are not suitable for commercial purpose, thus installation of filtering systems (spring boxes containing viscous dampers, ballast mats and acoustic shield) are provided to reduce the effect of the noise and vibration to acceptable level of 55 dB(A). But, a major drawback of application of the previously conducted experimental results was that the actual effect of installation of filtering system was never been validated. Therefore, the acquisition of noise and vibration on the present structure were obtained and compared to the computer simulations. These predicted the behavior of the station reasonably well. Also, the installation of filtering systems gave the superior reduction on noise and vibration. This application is successfully adapted without scarifying stability criteria related to the structural stability including excessive deformations or displacements. Three traffic operation safety limits: deck vertical acceleration, deflection of the structure, and longitudinal displacement of the slab were satisfactory.

  • PDF

Development of Cable Exciting System for Evaluating Dynamic Characteristics of Stay Cables (사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발)

  • Kim, Nam-Sik;Jeong, Woon;Seo, Ju-Won;Ahn, Sang-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.424-429
    • /
    • 2003
  • As a critical member of cable-stayed bridges, stay cables play an important role of supporting the entire structure. Traffic, wind or rain-wind induced vibrations of stay cables would be a major cause of degrading both safety and serviceability of the bridge. One of the effective alternatives to solve this problem is to employ the cable dampers. In order to design the cable damper optimally. it is necessary to exactly estimate the dynamic characteristics of the existing cables. Therefore, in this study, a cable exciting system (exciter) controlled digitally was developed. And to evaluate the performance of the cable exciter developed, a solution of the differential equation of cable motion considering the exciter was derived. Using the cable exciter. sine sweeping and resonance tests on a cable model were carried out to obtain the dynamic characteristics effectively.

  • PDF

Field Measurements of Exterior Noise at Apartment Houses (공동주택 외부소음 현장측정방법)

  • Song, Min-Jeong;Jung, Sung-Soo;Jang, Gil-Soo;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.359-362
    • /
    • 2005
  • Road traffic noise level and railway noise level are important factors on apartment inhabitant's comforts. The measurement methods which noted by Ministry of Construction & Transportation(MOCT) and Ministry of Environment(ME) are used for measurement of exterior noise at apartment houses. But these methods are out of date because the height of apartment houses have increased dramatically and owing to the sampling methods of the measurement time interval, rating values are induced differently due to sampling methods. In this study, the sound level of each floor of apartment houses is measured and compared. And rating value due to sampling methods are compared. As a result, the KS outline of 'Field Measurement of Exterior Noise at Apartment Housess' is suggested.

  • PDF

Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles (이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석)

  • Lee Yong-Seon;Kim Sang-Ryo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

A study on the Application of Electromagnetic Type HMD for Vibration Control of Structure (구조물 진동제어를 위한 전자석구동 HMD의 응용에 관한 연구)

  • Choi, Hyun;Jeoung, Jeoung-Kyo;Kim, Doo-Hoon;Lee, Sang-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.280-285
    • /
    • 2000
  • With recent development of technology of high stiffness material and the structural design, the construction of high rise structures such as tall building, tower has increased. The more flexible and slender structure is vulnerable to the internal and external dynamic loads induced by earthquake, wind and traffic load. There have been great effort and many researches to minimize the influence of dynamic loads on the structure. The traditional and stable method, the application of the passive damper, is not able to comply with various dynamic loads, while the mass damper which active control technology is integrated can effectively comply with load types. Therefore, the application of active control of huge structures with AMD(Active mass damper) or HMD(Hybrid Mass damper) is increasing. Up to now, most of actuators are servomotor and hydraulic actuator. But it is known that the electromagnetic actuator applies non contacting control force, which makes the control system easier with no characteristic change depending on time. In this paper, Hybrid mass damper with electromagnetic actuator was designed and applied to building scaled structure. The performance of designed HMD tested by shake table test is included.

  • PDF

A Study on Prediction of Railway Noise Using Raynoise Modeling - A comparison of predicting expressions and Raynoise simulations - (Raynoise를 이용한 철도소음의 예측에 관한 연구 - 예측식과 Raynoise모델링의 비교 -)

  • Kim Tae-Gu;Park Min-Soo;Kim Tae-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.6-10
    • /
    • 2005
  • With the rapid industrial development, railways have become a main traffic means of transportation. However, rail traffic noise and vibration have become a major problem in urban areas which is a very serious issue for the living environment. Especially, railway noise induced by rail operations has influenced on the residents living near railway tracks. The purpose of this paper is to investigate the Raynoise modeling in railway applications. Generally, my acoustics have been used to investigate the effectiveness of noise barriers in railway applications and barriers are modeled using the commercial software Raynoise. A-weighted sound pressure level have been measured at six locations, 4m from the track and are compared with experimental values. Based on the analysis of the results, Comparison between numerical and experimental values are within 1dB (A). Also, when a train is m through the Raynoise modeling, the general influential sphere of railway noise can be determined. Therefore, this study will be using basic data in establishing effective railway noise prevention plans far the future. Also, we could know that is applicable of Raynoise modeling at railway noise.

Mode identifiability of a cable-stayed bridge under different excitation conditions assessed with an improved algorithm based on stochastic subspace identification

  • Wu, Wen-Hwa;Wang, Sheng-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.363-389
    • /
    • 2016
  • Deficient modes that cannot be always identified from different sets of measurement data may exist in the application of operational modal analysis such as the stochastic subspace identification techniques in large-scale civil structures. Based on a recent work using the long-term ambient vibration measurements from an instrumented cable-stayed bridge under different wind excitation conditions, a benchmark problem is launched by taking the same bridge as a test bed to further intensify the exploration of mode identifiability. For systematically assessing this benchmark problem, a recently developed SSI algorithm based on an alternative stabilization diagram and a hierarchical sifting process is extended and applied in this research to investigate several sets of known and blind monitoring data. The evaluation of delicately selected cases clearly distinguishes the effect of traffic excitation on the identifiability of the targeted deficient mode from the effect of wind excitation. An additional upper limit for the vertical acceleration amplitude at deck, mainly induced by the passing traffic, is subsequently suggested to supplement the previously determined lower limit for the wind speed. Careful inspection on the shape vector of the deficient mode under different excitation conditions leads to the postulation that this mode is actually induced by the motion of the central tower. The analysis incorporating the tower measurements solidly verifies this postulation by yielding the prevailing components at the tower locations in the extended mode shape vector. Moreover, it is also confirmed that this mode can be stably identified under all the circumstances with the addition of tower measurements. An important lesson learned from this discovery is that the problem of mode identifiability usually comes from the lack of proper measurements at the right locations.