• Title/Summary/Keyword: traffic signal timing

Search Result 53, Processing Time 0.035 seconds

A Study on Optimization of Lane-Use and Traffic Signal Timing at a Signalized Intersection (신호교차로의 차로 배정과 신호시간 최적화 모형에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.93-103
    • /
    • 2015
  • PURPOSES : The purpose of this study is to present a linear programing optimization model for the design of lane-based lane-uses and signal timings for an isolated intersection. METHODS: For the optimization model, a set of constraints for lane-uses and signal settings are identified to ensure feasibility and safety of traffic flow. Three types of objective functions are introduced for optimizing lane-uses and signal operation, including 1) flow ratio minimization of a dual-ring signal control system, 2) cycle length minimization, and 3) capacity maximization. RESULTS : The three types of model were evaluated in terms of minimizing delay time. From the experimental results, the flow ratio minimization model proved to be more effective in reducing delay time than cycle length minimization and capacity maximization models and provided reasonable cycle lengths located between those of other two models. CONCLUSIONS : It was concluded that the flow ratio minimization objective function is the proper one to implement for lane-uses and signal settings optimization to reduce delay time for signalized intersections.

A Study of Traffic Signal Timing Optimization Based on PSO-BFO Algorithm (PSO-BFO 알고리즘을 통한 교통 신호 최적화 연구)

  • Hong Ki An;Gimok Bae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.182-195
    • /
    • 2023
  • Recently, research on traffic signal control using artificial intelligence algorithms has been receiving attention, and many traffic signal control models are being studied. However, most studies either focused on independent intersections or are theoretical studies that calculate signal cycle length according to changes in traffic volume. Therefore, this study was conducted on a signalized intersection - roundabout in Gajwa-ro. The Particle Swarm Optimization - Bacterial Foraging Optimization (PSO-BFO) algorithm was proposed, which is developed from the GA and PSO algorithms for minimizing congestion at two intersections. As a result, optimum cycle length was determined to be 158 seconds. The Verkehr In Stadten - SIMulationsmodell (VISSIM) results showed that there was 3.4% increased capacity, 8.2% reduced delay and 8.3% reduced number of stops at the Gajwa-ro signalized intersection. Additionally, at the roundabout, a 9.2% increase in capacity, a 7.1% reduction in delay, and a 27.2% decrease in the number of stops was observed.

Evaluation of Standard Crossing Light Timing in accordance with the Characteristics of Pedestrians (보행자 특성에 따른 횡단보도표시등 표준시간의 평가)

  • Jung Hwa Shik;Kim Woo Youl;Jung In Ju
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.1
    • /
    • pp.77-86
    • /
    • 2005
  • An investigation was conducted to evaluate both the time required and the time allowed for persons to cross streets. Currently, the local municipality uses a standardized formula to determine the time allotted for 'WALK' signals to function allowing pedestrian traffic to cross thoroughfares. The formula to determine the 'Theoretical Time(in seconds)' is the width of the street(in meter) divided by 1.2m/s. The basis of the denominator is 'normal' walking speed. Initially, 3 locations were chosen to evaluate the time between the appearance of the 'WALK' signal and the appearance of the 'DON'T WALK'. The interval between the two signals was assumed to allow a person to begin crossing the street at the appearance of the 'WALK' signal and terminate their crossing at the appearance of the 'DON'T WALK' signal. Of the 3 locations, 2 locations(elementary?middle schools and general hospital areas), the duration of the 'WALK' signal were not properly set and therefore need more time for those who use these cross walks. Specific details regarding the crossing locations and validity of the standardized formula were also presented and discussed.

Development of an Online Evaluation Model for Traffic Signal Control System (교통신호제어시스템 온라인 평가모형 개발)

  • Go, Gwang-Yong;Lee, Seung-Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • There have been a lot of efforts to find more accurate evaluation methods for traffic signal control effectiveness for a long period of time. Nowadays a newly advanced method called HILSS, 'Hardware-in-the-Loop-Simulation System', is used to evaluate the overall traffic control's effectiveness including physical control environments like communication conditions, hardware performance, controller's mechanical operations and so on. In this study, an Online-HILSS model has been developed, which runs on CORSIM(5.0) micro traffic simulation model on-lined to COSMOS. For the verification of the model, three tests are performed as follows; (1) a comparison of TMC's timing plan with the simulated green interval, (2) as a case study, a delay distribution comparison of the online simulation with the CORSIM stand-alone simulation. The result of the first test shows that the model can run the simulation green interval by TMC's timing plan correctly. The result of second test shows that the online simulation of the model brings the same simulation results with the CORSIM offline simulation in case of the same timing plan. These results mean that the online evaluation model could be a reliable tool to measure a real-time signal control effectiveness of a wide area street network with the HILSS method.

Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information (구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발)

  • Lee, Minhyoung;Kim, Youngchan;Jeong, Youngje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The expansion of the physical road in response to changes in social conditions and policy of the country has reached the limit. In order to alleviate congestion on the existing road to reconsider the effectiveness of this method should be asking. Currently, how to collect traffic information for management of the intersection is limited to point detection systems. Intelligent Transport Systems (ITS) was the traffic information collection system of point detection method such as through video and loop detector in the past. However, intelligent transportation systems of the next generation(C-ITS) has evolved rapidly in real time interval detection system of collecting various systems between the pedestrian, road, and car. Therefore, this study is designed to evaluate the development of an algorithm for queue length based real-time traffic signal control methodology. Four coordinates estimate on time-space diagram using the travel time each individual vehicle collected via the interval detector. Using the coordinate value estimated during the cycle for estimating the velocity of the shock wave the queue is created. Using the queue length is estimated, and determine the signal timing the total queue length is minimized at intersection. Therefore, in this study, it was confirmed that the calculation of the signal timing of the intersection queue is minimized.

An Algorithm for Real-Traffic Signal Control at An Isolated-Intersection (실시간 신호제어알고리즘 개발에 관한 연구)

  • Shin, Eon-Kyo;Kim, Young-Chan;Lee, Jong-Man
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.161-167
    • /
    • 2004
  • While most or fixed-time control systems such as UTCS produce the signal timing plans that either maximizing bandwidth or minimizing a disutility index of delay and stops, cannot consider the fluctuation of traffic flow. One category of the traffic-response control systems, which make small changes on a predefined signal plan such as SCOOT, cannot be easily modified for feedback real-time control schemes based on observation of variables other than traffic flow. The other category, which decide to whether switch the traffic lights or not at each step of time as in PRODYN, does not adequately consider the relations between traffic flows and traffic lights at each step of time. In this paper we present a complete formulation that adequately consider the relations between traffic flows and traffic lights at each step of time. The formulation is a binary mixed integer linear programing (BMILP) that obtain traffic lights at each step for minimizing delay. Since numarical examples for application of the proposed model illustrated that the model adequately produced dynamic traffic signal plans minimizing delay at each step, the model may be expected to contribute to advanced transportation management systems (ATMS) for dynamic traffic signal control.

An Analysis of Effectiveness for Permissive Warrants on the Restrictive Left-Turn Signal Control in Urban Arterial Roads (도시 간선도로에서 제한적 좌회전 신호운영의 적용기준 및 효과분석에 관한 연구)

  • Jeong, In-Taek;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • There are many limitations in dealing with rapidly changing traffic demand in urban cities. Thus recently, traffic operation and management skills are more emphasized rather than the expansion of traffic facilities. In particular, in the interrupted flow formed by signalized intersections, it is quite important to give optimal signal timing to each intersection with consideration of progression. However, as fixed signal times per direction can affect passing capacity in signalized intersections, the present four-signal phase including a left-turn signal has many limitations, including reduction of directional road capacity when traffic demand is increases dramatically during peak hours. Because of this problem, lots of studies about internal metering techniques for oversaturated signal control skills have progressed but these techniques are not used widely due to the absence of detectors for queue sensing in real-time signal control systems. In this research, a new methodology called the "restrictive left-turn signal control", which is already used at the intersection above Samsung subway station, is suggested in order to reduce control delay of urban arterial roads. The restrictive left-turn signal control allows a driver to make a U-turn and then a right turn instead of turning left in that intersection. With this change, the restrictive left-turn signal control can contribute to increased intersection capacity by reducing the number of signal phases and maximizing the through phase time. However, road structure and traffic conditions at the target intersections should be considered before the adoption of the proposed signal control.

Preliminary Study on Actuated Signal Control at Rural Area of Cheon-an City (천안시 외곽지역의 감응식 신호운영을 위한 기초연구)

  • Park, Soon-Yong;Kim, Dong-Nyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.52-63
    • /
    • 2009
  • Recently in Korea, in the case of metropolis, the urban signalized intersections are controlled by traffic information center or ITS center. Cheon-an City also established traffic information center through the 1st.-$\sim$3rd. ITS public construction and has managed this center that includes bus information service, traffic information collection and providing service, parking information service, and traffic responsive control system. In the Cheon-an metropolitan traffic signal operation, traffic signal controllers were grouped by the each main traffic flow axes and performed with coordinated signal timing for the signalized arterials, and also cycle and split changed by realtime traffic demands. Cheon-an urban traffic responsive control system was evaluated by intersection delay and speed, then it was verified that the delay decreased and vehicle speed improved. However, the rural signal control system to connect adjacency town was evaluated to have lower status than urban area due to the unimproved TOD (Time of day) plan. Therefore actuated signal control was examined for substitutive control system in isolated signal intersection. The aim of this article is to compare actuated signal control with TOD mode in the rural intersection of Cheon-an and to fine superiority of these two control mode, with evaluation of vehicle delay by using HCM(2000) method and by micro-simulation CORSlM. The result of field test show that actuated signal control gave better performance in delay comparison than the existing TOD signal control. And simulation outcome verified that non-optimized TOD has higher delay than optimized TOD mode, non-optimal actuated mode, and optimal actuated signal control mode. Particularly, these three modes delays had not different values according to the paired sample t-test. This is because small traffic demands were loaded in each links. This suggested actuated signal control is expected to be more effective than TOD mode in some rural isolated intersections which frequently need to survey for traffic volume.

  • PDF

Traffic Signal Control Strategy for Passive Tram Signal Priority on City Arterial (도시부 간선도로의 고정식 트램 우선신호를 위한 교통신호운영 전략)

  • Jeong, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.27-41
    • /
    • 2011
  • This research proposes new tram signal coordination model, called MAXBAND MILP-Tram for a passive tram signal priority strategy. The proposed model was formulated based on the MAXBAND model that was a traditional arterial signal optimization model. The model could calculate the bandwidth solutions for both general-purpose-lane traffic and median-tram-lane traffic. Lower progression speed are applied for the tram traffic considering lower running speed and dwell time at the stations. A phase sequence procedure determines the green times and left-turn phase sequences for tram traffic in median tram lane. To estimate the performance of the MILP-Tram model, the control delay of trams were estimated using the micro simulation model, VISSIM. The analysis results showed 57 percent decrease of the tram compared to the conventional signal timing model. The delay for car, however, increased 18 percent. The sensitivity analysis indicated that the passive tram signal priority strategy using the offset and phase sequence optimization was effective in reducing the person delay under the congested traffic condition.

Development of an Interface Module with a Microscopic Simulation Model for COSMOS Evaluation (미시적 시뮬레이터를 이용한 실시간 신호제어시스템(COSMOS) 평가 시뮬레이션 환경 개발)

  • Song, Sung-Ju;Lee, Seung-Hwan;Lee, Sang-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.95-102
    • /
    • 2004
  • The COSMOS is an adaptive traffic control systems that can adjust signal timing parameters in response to various traffic conditions. To evaluate the performance of the COSMOS systems, the field study is only practical option because any evaluation tools are not available. To overcome this limitation, a newly integrated interfacing simulator between a microscopic simulation program and COSMOS was developed. In this paper, a detector module and a signal timing module as well as general feature of the simulator were described. A validation test was performed to verify the accuracy of the data flow within the simulator. It was shown that the accuracy level of information from the simulator was high enough for real application. Several practical comments on further studies were also included to enhance the functional specifications of the simulator.